×

Parity sequences of the \(3x+1\) map on the 2-adic integers and Euclidean embedding. (English) Zbl 1448.11060

Summary: In this paper, we consider the one-to-one correspondence between a 2-adic integer and its parity sequence under iteration of the so-called “\(3x + 1\)” map. First, we prove a new formula for the inverse transform. Next, we briefly review what is known about the induced automorphism and study its dynamics on the 2-adic integers. We find that it is ergodic on many small odd invariant sets, and that it has two odd cycles of period 2 in addition to its two odd fixed points. Finally, a plane embedding is presented, for which we establish affine self-similarity by using functional equations.

MSC:

11B83 Special sequences and polynomials
11B75 Other combinatorial number theory
37A25 Ergodicity, mixing, rates of mixing

References:

[1] E. Akin, Why is the 3x+1 problem hard?, Contemp. Math. 356 (2004), 1-20. · Zbl 1067.37013
[2] V. Anashin, Ergodic transformations in the space of p-adic integers, in p-Adic Mathematical Physic, AIP Conference Proceedings, Vol. 826, Belgrade, 2006, 3-24. Available at https://arxiv.org/abs/math/0602083. · Zbl 1152.37301
[3] V. Anashin, A. Khrennikov, E. Yurova, Ergodicity criteria for non-expanding transformations of 2-adic spheres, Discrete Contin. Dyn. Syst. 34 (2014), 367-377. · Zbl 1317.37115
[4] P. Andaloro, On total stopping times under 3x+1 iteration, Fibonacci Quart. 38 (2000), 73-78. · Zbl 0949.11007
[5] D. J. Bernstein, A non-iterative 2-adic statement of the 3N + 1 conjecture, Proc. Amer. Math. Soc. 121 (1994), 405-408. · Zbl 0803.11019
[6] D. J. Bernstein, J. C. Lagarias, The 3x + 1 conjugacy map, Can. J. Math. 48 (1996), 1154- 1169. · Zbl 0876.11008
[7] C. B¨ohm, G. Sontacchi, On the existence of cycles of given length in integer sequences like xn+1= xn/2 if xneven, and xn+1= 3xn+ 1 otherwise, Atti Accad. Naz. Lincei Sci. Fis. Mat. Natur. 64 (1978), 260-264. · Zbl 0417.10008
[8] D. V. Chistyakov, Fractal geometry for images of continuous embeddings of p-adic numbers and solenoids into Euclidean spaces, Theoret. Math. Phys. 109 (1996), 1495-1507. · Zbl 0937.28007
[9] J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107-115. · Zbl 0528.10006
[10] R. E. Crandall, On the “3x + 1” problem, Math. Comp. 32 (1978), 1281-1292. · Zbl 0395.10013
[11] A. A. Cuoco, Visualizing the p-adic integers, Amer. Math. Monthly 98 (1991), 355-364. · Zbl 0748.11059
[12] A. Edgington, The autoconjugacy of a generalized Collatz map, preprint available at https://arxiv.org/abs/1206.0553(2012), 1-6.
[13] C. J. Everett, Iteration of the number theoretic function f (2n) = n, f (2n + 1) = 3n + 2, Adv. Math. 25 (1977), 42-45. · Zbl 0352.10001
[14] L. E. Garner, On heights in the Collatz 3n+ 1 problem, Discrete Math. 55 (1985), 57-64. · Zbl 0566.10009
[15] R. K. Guy, Unsolved Problems in Number Theory, Third Edition, Springer, 2004. · Zbl 1058.11001
[16] Y.Hashimoto,AfractalsetassociatedwiththeCollatzproblem,Bull.of AichiUniv.ofEducation(Naturalscience)56(2007),1-6.Availableat https://www.researchgate.net/profile/Yukihiro Hashimoto.
[17] J. C. Lagarias, The 3x + 1 problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23. · Zbl 0566.10007
[18] J. C. Lagarias, The set of rational cycles for the 3x + 1 problem, Acta Arith. 56 (1990), 33-53. · Zbl 0773.11017
[19] J. C. Lagarias (editor), The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. · Zbl 1253.11003
[20] J. L´opez, P. Stoll, The 3x+1 conjugacy map over a Sturmian word, Integers 9 (2009), 141- 162. · Zbl 1195.11040
[21] K. R. Matthews, A. Watts, A generalization of Hasse’s generalization of the Syracuse algorithm, Acta Arith. 43 (1984), 167-175. · Zbl 0479.10006
[22] H. M¨oller, ¨Uber Hasse’s Verallgemeinerung des Syracuse-Algorithmus (Kakutani’s Problem), Acta Arith. 34 (1978), 219-226. · Zbl 0329.10008
[23] K. G. Monks, J. Yazinski, The autoconjugacy of the 3x + 1 function, Discrete Math. 275 (2004), 219-236. · Zbl 1048.11012
[24] A. F. Monna, Sur une transformation simple des nombres P-adiques en nombres r´eels, Indag. Math. 14 (1952), 1-9. · Zbl 0046.05004
[25] H. M¨uller, Das ‘3n+1’ Problem, Mitt. Math. Ges. Hamburg 12 (1991), 231-251. · Zbl 0773.11018
[26] O. Rozier, The 3x + 1 problem: a lower bound hypothesis, Funct. Approx. Comment. Math. 56 (2017), 7-23. · Zbl 1415.11026
[27] R. Simonetto,Conjecture de Syracuse :Avanc´ees In´edites,2016. Available at https://mathsyracuse.wordpress.com.
[28] R. Terras, A stopping time problem on the positive integers, Acta Arith. 30 (1976), 241-252. · Zbl 0348.10037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.