×

Velocity overshoots in gradual contraction flows. (English) Zbl 1274.76128

From the summary: This study reports the results of a systematic numerical investigation, using the upper-convected Maxwell (UCM) and Phan-Thien-Tanner (PTT) models, of viscoelastic fluid flow through three-dimensional gradual planar contractions of various contraction ratios with the aim of investigating experimental observations of extremely large near-wall velocity overshoots in similar geometries. We are able to obtain good qualitative agreement with the experiments, even using the UCM model in creeping-flow conditions, showing that neither inertia, second normal-stress difference nor shear-thinning effects are required for the phenomenon to be observed. Guided by the numerical results we propose a simple explanation for the occurrence of the velocity overshoots and the conditions under which they arise.

MSC:

76A10 Viscoelastic fluids

References:

[1] Poole, R. J.; Escudier, M. P.; Oliveira, P. J.: Laminar flow of a viscoelastic shear-thinning liquid through a plane sudden expansion preceded by a gradual contraction, Proc. roy. Soc. lond. Ser. A 461, 3827 (2005) · Zbl 1370.76012
[2] Poole, R. J.; Escudier, M. P.; Afonso, A.; Pinho, F. T.: Laminar flow of a viscoelastic shear-thinning liquid over a backward-facing step preceded by a gradual contraction, Phys. fluids 19, 093101 (2007) · Zbl 1182.76605 · doi:10.1063/1.2769380
[3] Keegan, F. L.; Escudier, M. P.; Alves, M. A.; Poole, R. J.: Viscoelastic flow through gradual contractions: experiments and simulations, 15th international congress on rheology/80th annual meeting of the society of rheology. AIP conference Proceedings, vol. 1027 1027, 228-230 (2008)
[4] Phan-Thien, N.; Tanner, R. I.: A new constitutive equation derived from network theory, J. non-newt. Fluid mech. 2, 353 (1977) · Zbl 0361.76011 · doi:10.1016/0377-0257(77)80021-9
[5] Afonso, A.; Pinho, F. T.: Numerical investigation of the velocity overshoots in the flow of viscoelastic fluids inside a smooth contraction, J. non-newt. Fluid mech. 139, 1 (2006) · Zbl 1195.76081 · doi:10.1016/j.jnnfm.2006.05.012
[6] Oldroyd, J. G.: On the formulation of rheological equations of state, Proc. roy. Soc. lond. A 200, 523 (1950) · Zbl 1157.76305 · doi:10.1098/rspa.1950.0035
[7] Oliveira, P. J.; Pinho, F. T.; Pinto, G. A.: Numerical simulation of non-linear elastic flows with a general collocated finite-volume method, J. non-newt. Fluid mech. 79, 1 (1998) · Zbl 0960.76053 · doi:10.1016/S0377-0257(98)00082-2
[8] Oliveira, P. J.: On the numerical implementation of non-linear viscoelastic models in a finite-volume method, Numer. heat trans. B 40, 283 (2001)
[9] Alves, M. A.; Oliveira, P. J.; Pinho, F. T.: Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions, J. non-newt. Fluid mech. 110, 45 (2003) · Zbl 1027.76003 · doi:10.1016/S0377-0257(02)00191-X
[10] Alves, M. A.; Poole, R. J.: Divergent flow in contractions, J. non-newt. Fluid mech. 144, 140 (2007) · Zbl 1196.76020 · doi:10.1016/j.jnnfm.2007.04.003
[11] Mehta, R. D.; Bradshaw, P.: Design rules for small low-speed wind tunnels, Aero. J. (Roy. Aeronaut. soc.) 83, 443 (1979)
[12] Doolan, C. J.: Numerical evaluation of contemporary low speed wind tunnel contraction designs, J. fluids eng. 129, 1241 (2007)
[13] Darbyshire, A. G.; Mullin, T.: Transition to turbulence in constant-mass-flux pipe flow, J. fluid mech. 289, 83 (1995)
[14] Den Toonder, J. M. J.; Hulsen, M. A.; Kuiken, G. D. C.; Nieuwstadt, F. T. M.: Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments, J. fluid mech. 337, 193-231 (1997)
[15] Poole, R. J.; Escudier, M. P.: Turbulent flow of viscoelastic liquids through an axisymmetric sudden expansion, J. non-newt. Fluid mech. 117, 25 (2004)
[16] Durst, F.; Ray, S.; Unsal, B.; Bayoumi, O. A.: The development lengths of laminar pipe and channel flows, J. fluids eng. 127, 1154 (2005)
[17] Poole, R. J.; Alves, M. A.; Oliveira, P. J.; Pinho, F. T.: Plane sudden expansion flows of viscoelastic liquids, J. non-newt. Fluid mech. 146, 79 (2007) · Zbl 1120.76006 · doi:10.1016/j.jnnfm.2006.11.001
[18] Boger, D. V.; Walters, K.: Rheological phenomena in focus, (1993) · Zbl 0843.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.