×

Collective search and decision-making for target localization. (English) Zbl 1251.93086

Summary: In this article, we investigate the properties of collective search and decision-making in robotic swarm, inspired by a phenomena witnessed in bio-societies. The task of the proposed robotic swarm, comprising scouts and labourers, is to find the most hazardous target in a predefined area. Since in the proposed scenario the time interval for decision-making is predefined, robotic scouts have to detect targets within a particular amount of time. Hence, in the first part of the article, we define a model of scout movement that enhances the explored area. As we want to keep the searching process as simple as possible, and at the same time to mimic social insect behaviour, a particular type of correlated random walk is used for exploration. The second part of the article deals with modelling of the decision-making process in the robotic swarm. Using random walk theory we determine under which circumstances all agents (or a particular number of them) would be committed to the most hazardous target at the moment when the predefined time interval for decision-making expires.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93A14 Decentralized systems
68T05 Learning and adaptive systems in artificial intelligence
68T35 Theory of languages and software systems (knowledge-based systems, expert systems, etc.) for artificial intelligence

References:

[1] Sahin E., Swarm Robotics: State-of-the-Art Survey 3342 pp 10– (2004) · doi:10.1007/978-3-540-30552-1_2
[2] Fritsch, D., Weneger, K. and Schraft, R.D. Sensor concept for robotic swarms for the elimination of marine oil pollutions. Proceedings of the 3rd International Workshop on Advances in Service Robotics. July6–7, Vienna, Austria.
[3] DOI: 10.1016/j.jhazmat.2007.10.112 · doi:10.1016/j.jhazmat.2007.10.112
[4] Varga, M., Piskovic, Z. and Bogdan, S. Multi-agent swarm based localization of hazardous events. International Conference on Control and Automation, ICCA. June9–11, Xiamen, China.
[5] Shlesinger M., On Growth and Form: Fractal and Non-Fractal Patterns in Physics pp 279– (1986)
[6] DOI: 10.1038/381413a0 · doi:10.1038/381413a0
[7] DOI: 10.1038/44831 · doi:10.1038/44831
[8] DOI: 10.1111/j.0030-1299.1999.12730.x · doi:10.1111/j.0030-1299.1999.12730.x
[9] DOI: 10.1007/s00265-003-0700-6 · doi:10.1007/s00265-003-0700-6
[10] DOI: 10.1890/06-1916.1 · doi:10.1890/06-1916.1
[11] DOI: 10.1038/nature06199 · doi:10.1038/nature06199
[12] DOI: 10.1111/j.1365-2656.2008.01428.x · doi:10.1111/j.1365-2656.2008.01428.x
[13] DOI: 10.1890/09-0079.1 · doi:10.1890/09-0079.1
[14] DOI: 10.1038/nature09116 · doi:10.1038/nature09116
[15] DOI: 10.1073/pnas.2137243100 · doi:10.1073/pnas.2137243100
[16] DOI: 10.1098/rsif.2008.0006 · doi:10.1098/rsif.2008.0006
[17] DOI: 10.1890/06-1769.1 · doi:10.1890/06-1769.1
[18] DOI: 10.1007/s00359-008-0365-8 · doi:10.1007/s00359-008-0365-8
[19] DOI: 10.1890/0012-9658(2001)082[1680:CRWEOA]2.0.CO;2 · doi:10.1890/0012-9658(2001)082[1680:CRWEOA]2.0.CO;2
[20] DOI: 10.1098/rsif.2010.0292 · doi:10.1098/rsif.2010.0292
[21] DOI: 10.1051/apido:2004004 · doi:10.1051/apido:2004004
[22] Frisch K., Osterr. Zool. Z. 1 pp 1– (1946)
[23] DOI: 10.1007/s00265-003-0664-6 · doi:10.1007/s00265-003-0664-6
[24] DOI: 10.1007/s00359-001-0243-0 · doi:10.1007/s00359-001-0243-0
[25] DOI: 10.1007/BF00623813 · doi:10.1007/BF00623813
[26] Trianni, V. and Dorigo, M. 2005. Emergent collective decisions in a swarm of robots. Proceedings of IEEE Swarm Intelligence Symposium, SIS 2005. June8–102005, Pasadena, CA.
[27] DOI: 10.1007/s002650050522 · doi:10.1007/s002650050522
[28] Ghosh, S. and Marshall, I.W. Simple model of collective decision-making during nectar source selection by honey bees. Workshop on Memory and Learning Mechanisms in Autonomous Robotics as part of the 8th European Conference on Artificial Life (ECAL 2005). August. Canterbury, UK
[29] DOI: 10.1177/0278364906063426 · doi:10.1177/0278364906063426
[30] DOI: 10.1007/s10846-009-9361-7 · Zbl 1203.68293 · doi:10.1007/s10846-009-9361-7
[31] DOI: 10.1890/07-1032.1 · doi:10.1890/07-1032.1
[32] DOI: 10.1098/rstb.2005.1733 · doi:10.1098/rstb.2005.1733
[33] DOI: 10.1007/BF01010532 · doi:10.1007/BF01010532
[34] DOI: 10.1063/1.1704269 · Zbl 1342.60067 · doi:10.1063/1.1704269
[35] Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z. and Tuttle, M.R. Many random walks are faster than one. SPAA ’08: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures. June14–162008, Munich, Germany. pp.119–128. New York: Association for Computing Machinery. · Zbl 1223.05284
[36] Lawler G., Intersection of Random Walks (1996) · Zbl 0925.60078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.