×

Matrix-based discrete event control for surveillance mobile robotics. (English) Zbl 1203.68223

Summary: This paper focuses on the control system for an autonomous robot for the surveillance of indoor environments. Our approach proposes a matrix-based formalism which allows us to merge in a single framework discrete-event supervisory control, conflict resolution and reactive control. As a consequence, the robot is able to autonomously handle high level tasks as well as low-level behaviors, solving control and decision-making issues simultaneously. Moreover, the matrix-based controller is modular and can be easily reconfigured if mission characteristics or robot hardware configuration change. An illustrative example and a report on experimental investigations are provided to illustrate the main features of the proposed approach.

MSC:

68T40 Artificial intelligence for robotics
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
93C85 Automated systems (robots, etc.) in control theory

Software:

CARMEN
Full Text: DOI

References:

[1] Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 34(3), 334–352 (2004) · doi:10.1109/TSMCC.2004.829274
[2] Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review. IEE Proc. Vis. Image Signal Process. 152(2), 192–204 (2005) · doi:10.1049/ip-vis:20041147
[3] Everett, H.R.: Robotic security systems. IEEE Instrum. Meas. Mag. 6(4), 30–34 (2003) · doi:10.1109/MIM.2003.1251480
[4] DehuaI, Z., Gang, X., Jinming, Z., Li, L.: Development of a mobile platform for security robot. In: Proceedings of IEEE International Conference on Automation and Logistics, pp. 1262–1267 (2007)
[5] Burgard, W., Moors, M., Fox, D., Reid, S., Thrun, S.: Collaborative multi-robot exploration. In: Proceedings of IEEE International Conference on Artificial Intelligence, pp. 852–858 (2000)
[6] Kwok, K.S., Driessen, B.J., Phillips, C.A., Tovey, C.A.: Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms. J. Intell. Robot. Syst. 35(1), 111–122 (2002) · Zbl 1034.68627 · doi:10.1023/A:1020238115592
[7] Grace, J., Baillieul, J.: Stochastic strategies for autonomous robotic surveillance. In: Proceedings of IEEE Conference on Decision and Control, pp. 2200–2205 (2005)
[8] Roman-Ballesteros, I., Pfeiffer, C.F.A.: Framework for cooperative multi-robot surveillance tasks. In: Proceedings of Electronics, Robotics and Automotive Mechanics Conference, vol. 2, pp. 163–170 (2006)
[9] Vig, L., Adams, J.A.: Coalition formation: from software agents to robots. J. Intell. Robot. Syst. 50(1), 85–118 (2007) · doi:10.1007/s10846-007-9150-0
[10] Mireles, J., Lewis, F.: Deadlock analysis and routing on free-choice multipart reentrant flow lines using a matrix-based discrete event controller. In: Proceedings of the IEEE International Conference on Decision and Control, vol. 1, pp. 793–798 (2002)
[11] Mireles, J., Lewis, F.: Intelligent material handling: development and implementation of a matrix-based discrete event controller. IEEE Trans. Ind. Electron. 48(6), 1087–1097 (2001) · doi:10.1109/41.969387
[12] Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty architecture for robotic autonomy. In: Proceedings of the IEEE Aerospace Conference, Big Sky, Montana (2001)
[13] Mes, M., van der Heijden, M., van Hillegersberg, J.: Design choices for agent-based control of AGVs in the dough making process. Decis. Support Syst. 44(4), 983–999 (2008)
[14] Tacconi, D., Lewis, F.: A new matrix model for discrete event systems: application to simulation. IEEE Control Syst. Mag. 17(5), 62–71 (1997) · doi:10.1109/37.621472
[15] Bogdan, S., Lewis, F.L., Kovacic, Z., Mireles, J.J.: Manufacturing Systems Control Design: A Matrix based Approach. Springer (2006) · Zbl 1118.93001
[16] Giordano, V., Zhang, J.B., Naso, D., Lewis, F.: Integrated supervisory and operational control of a warehouse with a matrix-based approach. IEEE Trans. Autom. Sci. Eng. 5(1), 53–70 (2008) · doi:10.1109/TASE.2007.891472
[17] Koutsoukos, X.D., Antsaklis, P.J., Stiver, J.A., Lemmon, M.D.: Supervisory control of hybrid systems. Proc. IEEE 88(7), 1026–1049 (2000) · doi:10.1109/5.871307
[18] Fierro, R., Lewis, F.L.: A framework for hybrid control design. IEEE Trans. Syst. Man Cybern. Part A 27(6), 765–773 (1997) · doi:10.1109/3468.634640
[19] Huq, R., Mann, G.K.I., Gosine, R.G. : Behavior-modulation technique in mobile robotics using fuzzy discrete event system. IEEE Trans. Robot. 22(5), 903–916 (2006) · doi:10.1109/TRO.2006.878937
[20] Ji, M., Sarkar, N.: Supervisory fault adaptive control of a mobile robot and its application in sensor-fault accommodation. IEEE Trans. Robot. 23(1), 174–178 (2007) · doi:10.1109/TRO.2006.889481
[21] Brink, K., Olsson, M., Bolmsj, G.: Increased autonomy in industrial robotic systems: a framework. J. Intell. Robot. Syst. 19(4), 357–373 (1997) · doi:10.1023/A:1007909120189
[22] Chen, Y.L., Ling F.: Modeling of discrete event systems using finite state machines with parameters. In: Proceedings of IEEE International Conference on Control Applications, Anchorage, Alaska (2000)
[23] Ma, L., Hasegawa, K., Sugisawa, M., Takahashi, K., Miyagi, P.E., Santos Filho, D.J.: On resource arc for petri net modelling of complex resource sharing system. J. Intell. Robot. Syst. 26(3), 423–437 (1999) · doi:10.1023/A:1008122101686
[24] Holloway, L.E., Krogh, B.H., Giua, A.: A survey of petri net methods for controlled discrete event systems. Discret. Event Dyn. Syst. Theory Appl. 7(2), 151–190 (1997) · Zbl 0968.93053 · doi:10.1023/A:1008271916548
[25] Georgilakis, P.S., Katsigiannis, J.A., Valavanis, K.P., Souflaris, A.T.: A systematic stochastic petri net based methodology for transformer fault diagnosis and repair actions. J. Intell. Robot. Syst. 45(2), 181–201 (2006) · doi:10.1007/s10846-006-9033-9
[26] Li, Y., Wonham, W.M.: Control of vector discrete-event systems I - the base model. IEEE Trans. Automat. Contr. 38(8), 1214–1227 (1993) · Zbl 0784.93007 · doi:10.1109/9.233154
[27] Li, Y., Wonham, W.M.: Control of vector discrete-event systems II - controller synthesis. IEEE Trans. Automat. Contr. 39(3), 512–513 (1994) · Zbl 0823.93003 · doi:10.1109/9.280750
[28] Giordano, V., Ballal, P., Lewis, F., Turchiano, B., Zhang, J.B.: Supervisory control of mobile sensor networks: math formulation, simulation, and implementation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(4), 806–819 (2006) · doi:10.1109/TSMCB.2006.870647
[29] Schiraldi, V., Giordano, V., Naso, D., Turchiano, B., Lewis, F.: Matrix-based scheduling and control of a mobile sensor network. In: 17th IFAC World Congress, pp. 10415–10420 (2008)
[30] Nicolescu, M.N., Mataric, M.J.: A hierarchical architecture for behavior-based robots. In: Proceedings of First International Joint Conference on Autonomous Agents and Multi-Agent Systems, Italy (2002)
[31] Gat, E.: Three-layer architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. AAAI, Menlo Park (1998)
[32] Connell, J.: SSS: a hybrid architecture applied to robot navigation. In: Proceedings of IEEE International Conference on Robotics and Automation (1992)
[33] Arkin, R.C., Balch, T.R.: Aura: principles and practice in review. J. Exp. Theor. Artif. Intell. 9, 175–189 (1997) · doi:10.1080/095281397147068
[34] Brooks, R.A.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991) · doi:10.1016/0004-3702(91)90053-M
[35] Payton, D.W., Keirsey, D., Kimble, D.M., Krozel, J., Rosenblatt, J.K.: Do whatever works: a robust approach to fault-tolerant autonomous control. Appl. Intell. 2(3), 225–250 (1992) · doi:10.1007/BF00119550
[36] Cupertino, F., Giordano, V., Naso, D., Delfine, L.: Fuzzy control of a mobile robot using a matlab-based rapid prototyping system. IEEE Robot. Autom. Mag. 13(4), 74–81 (2006) · doi:10.1109/MRA.2006.250563
[37] Côté, C., Brosseau, Y., Létourneau, D., Raïevsky C., Michaud, F.: Robotic software integration using MARIE. Int. J. Adv. Robot. Syst. 3(1), 55–60 (2006)
[38] Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot programming: the carnegie mellon navigation (CARMEN) toolkit. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp.2436–2441 (2003)
[39] Di Paola, D., Milella, A., Cicirelli, G., Distante, A.: Robust vision-based monitoring of indoor environments by an autonomous mobile robot. In: Proceedings of ASME International Mechanical Engineering Congress & Exposition (2007)
[40] Marotta, C., Milella, A., Cicirelli, G., Distante, A.: Using a 2D laser rangefinder for environment monitoring by an autonomous mobile robot. In: Proceedings of ASME International Mechanical Engineering Congress & Exposition (2007)
[41] Milella, A., Vanadia, P., Cicirelli, G., Distante, A.: RFID-based environment mapping for autonomous mobile robot applications. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2007)
[42] Milella, A., Dimiccoli, C., Cicirelli, G., Distante, A.: Laser-based people-following for human-augmented mapping of indoor environments. In: Proceedings of the 25th IASTED International Multi-Conference, pp. 151–155. (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.