×

Initial solution estimation for one-step inverse isogeometric analysis in sheet metal stamping. (English) Zbl 1439.74236

Summary: Recently, Isogeometric Analysis (IGA) based on incremental methods for simulating the stamping process has been researched. To the best of our knowledge, however, few studies have combined IGA and One-step inverse approach which is based on total deformation theory of plasticity. A key step for One-step inverse IGA is to estimate a good initial solution. Traditional mesh-based initial solution algorithms for One-step inverse approach are not suitable for One-step inverse NURBS-based IGA. In this paper, we presented a method which can rapidly unfold the undevelopable NURBS surface onto a planar domain and obtain a good initial solution estimation for One-step inverse IGA. The key idea of the presented method is unfolding the control net of a NURBS surface for isogeometric analysis by energy-based initial solution estimation algorithm. In addition, we developed a “cutting-stitching” algorithm which can separate a complex control net into several parts with simple shapes. Numerical examples illustrate the initial solutions using the presented method are approaching the final results by One-step inverse finite element method. This implies that the iterative steps and computational time of One-step inverse IGA will be reduced significantly compared with that of One-step inverse finite element method.

MSC:

74M20 Impact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65D07 Numerical computation using splines
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

ISOGAT
Full Text: DOI

References:

[1] Batoz, J.; Duroux, P.; Guo, Y.; Detraux, J., An efficient algorithm to estimate the large strains in deep drawing, (Proceedings of the Third International Conference on Numerical Methods in Industrial Forming Processes. Proceedings of the Third International Conference on Numerical Methods in Industrial Forming Processes, (NUMIFORM,89) (1989), Balkema, Rotterdam), 383-388
[2] Majlessi, S.; Lee, D., Development of multistage sheet metal forming analysis method, J. Mater. Shaping Technol., 6, 1, 41-54 (1988)
[3] Batoz, J.; Guo, Y.; Detraux, J., An inverse finite element procedure to estimate the large plastic strain in sheet metal forming, Proc. Adv. Technol. Plast., 3, 1403-1408 (1990)
[4] Liu, S.-D.; Assempoor, A., Development of FAST 3 D-A Design-Oriented One Step FEM in Sheet Metal Forming, 1515-1526 (1995), Pineridge Press Ltd.: Pineridge Press Ltd. (Wales)
[5] Lee, C.; Huh, H., Blank design and strain prediction of automobile stamping parts by an inverse finite element approach, J. Mater. Process. Technol., 63, 1, 645-650 (1997)
[6] Chung, K.; Richmond, O., A deformation theory of plasticity based on minimum work paths, Int. J. Plast., 9, 8, 907-920 (1993) · Zbl 0793.73034
[7] Zhang, X.; Hu, S.; Lang, Z.; Guo, W.; Hu, P., Energy-based initial guess estimation method for one-step simulation, Int. J. Comput. Methods Eng. Sci. Mech., 8, 6, 411-417 (2007) · Zbl 1144.74381
[8] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[9] Bazilevs, Y.; Beirao da Veiga, L.; Cottrell, J. A.; Hughes, T. J.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 07, 1031-1090 (2006) · Zbl 1103.65113
[10] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 1, 3-37 (2008) · Zbl 1169.74015
[11] Bazilevs, Y.; Gohean, J.; Hughes, T.; Moser, R.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg., 198, 45, 3534-3550 (2009) · Zbl 1229.74096
[12] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41, 5257-5296 (2006) · Zbl 1119.74024
[13] Temizer, I.; Wriggers, P.; Hughes, T., Contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 200, 9, 1100-1112 (2011) · Zbl 1225.74126
[14] De Lorenzis, L.; Temizer, I.; Wriggers, P.; Zavarise, G., A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Internat. J. Numer. Methods Engrg., 87, 13, 1278-1300 (2011) · Zbl 1242.74104
[15] Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5, 276-289 (2010) · Zbl 1227.74107
[16] Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T., A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 13, 1367-1378 (2011) · Zbl 1228.74077
[17] Wang, X.; Zhu, X.; Hu, P., Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions, Int. J. Mech. Sci., 104, 190-199 (2015)
[18] Liu, H.; Zhu, X.; Yang, D., Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams, Struct. Eng. Mech., 59, 3, 503-526 (2016)
[19] De Luycker, E.; Benson, D.; Belytschko, T.; Bazilevs, Y.; Hsu, M., X-FEM in isogeometric analysis for linear fracture mechanics, Internat. J. Numer. Methods Engrg., 87, 6, 541-565 (2011) · Zbl 1242.74105
[20] de Borst, R.; Hughes, T. J.; Scott, M. A.; Verhoosel, C. V., Isogeometric failure analysis, (Multiscale and Multiphysics Processes in Geomechanics (2011), Springer), 113-116
[21] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 33, 2976-2988 (2008) · Zbl 1194.74263
[22] Cho, S.; Ha, S.-H., Isogeometric shape design optimization: exact geometry and enhanced sensitivity, Struct. Multidiscip. Optim., 38, 1, 53-70 (2009) · Zbl 1274.74221
[23] Qian, X., Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Engrg., 199, 29, 2059-2071 (2010) · Zbl 1231.74352
[24] Seo, Y.-D.; Kim, H.-J.; Youn, S.-K., Isogeometric topology optimization using trimmed spline surfaces, Comput. Methods Appl. Mech. Engrg., 199, 49, 3270-3296 (2010) · Zbl 1225.74068
[25] Manh, N. D.; Evgrafov, A.; Gersborg, A. R.; Gravesen, J., Isogeometric shape optimization of vibrating membranes, Comput. Methods Appl. Mech. Engrg., 200, 13, 1343-1353 (2011) · Zbl 1228.74062
[26] Uhm, T.-K.; Youn, S.-K., T-spline finite element method for the analysis of shell structures, Internat. J. Numer. Methods Engrg., 80, 4, 507-536 (2009) · Zbl 1176.74198
[27] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5, 229-263 (2010) · Zbl 1227.74123
[28] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5, 264-275 (2010) · Zbl 1227.74125
[29] da Veiga, L. B.; Buffa, A.; Cho, D.; Sangalli, G., IsoGeometric analysis using T-splines on two-patch geometries, Comput. Methods Appl. Mech. Engrg., 200, 21, 1787-1803 (2011) · Zbl 1228.65229
[30] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213, 206-222 (2012) · Zbl 1243.65030
[31] da Veiga, L. B.; Buffa, A.; Cho, D.; Sangalli, G., Analysis-suitable T-splines are dual-compatible, Comput. Methods Appl. Mech. Engrg., 249, 42-51 (2012) · Zbl 1348.65048
[32] Zhang, Y.; Wang, W.; Hughes, T. J., Solid T-spline construction from boundary representations for genus-zero geometry, Comput. Methods Appl. Mech. Engrg., 249, 185-197 (2012) · Zbl 1348.65057
[33] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49, 3554-3567 (2011) · Zbl 1239.65013
[34] Schillinger, D.; Rank, E., An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput. Methods Appl. Mech. Engrg., 200, 47, 3358-3380 (2011) · Zbl 1230.74197
[35] Schillinger, D.; Dede, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249, 116-150 (2012) · Zbl 1348.65055
[36] Zhu, X.; Hu, P.; Ma, Z. D., B++ splines with applications to isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 311, 503-536 (2016) · Zbl 1439.65021
[37] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Methods Appl. Mech. Engrg., 200, 21, 1892-1908 (2011) · Zbl 1228.74091
[38] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 47, 3410-3424 (2011) · Zbl 1230.74230
[39] Höllig, K.; Reif, U.; Wipper, J., Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39, 2, 442-462 (2001) · Zbl 0996.65119
[40] Höllig, K.; Reif, U., Nonuniform web-splines, Comput. Aided Geom. Design, 20, 5, 277-294 (2003) · Zbl 1069.65502
[41] Höllig, K.; Apprich, C.; Streit, A., Introduction to the Web-method and its applications, Adv. Comput. Math., 23, 1, 215-237 (2005) · Zbl 1070.65118
[42] Höllig, K.; Hörner, J.; Hoffacker, A., Finite element analysis with B-splines: weighted and isogeometric methods, (International Conference on Curves and Surfaces (2010), Springer), 330-350 · Zbl 1352.65039
[43] Burkhart, D.; Hamann, B.; Umlauf, G., Iso-geometric Finite Element Analysis Based on Catmull-Clark: ubdivision Solids, (Computer Graphics Forum, Vol. 29 (2010), Wiley Online Library), 1575-1584
[44] Cirak, F.; Long, Q., Subdivision shells with exact boundary control and non-manifold geometry, Internat. J. Numer. Methods Engrg., 88, 9, 897-923 (2011) · Zbl 1242.74102
[45] Dikici, E.; Snare, S. R.; Orderud, F., Isoparametric finite element analysis for Doo-Sabin subdivision models, (Proceedings of Graphics Interface 2012 (2012), Canadian Information Processing Society), 19-26
[46] Sowerby, R.; Duncan, J. L.; Chu, E., The modeling of sheet metal stamping, Int. J. Mech. Sci., 28, 7, 415-430 (1986)
[47] Guo, Y. Q.; Naceur, H.; Debray, K.; Bogard, F., Initial solution estimation to speed up inverse approach in stamping modeling, Eng. Comput., 20, 7, 810-834 (2003) · Zbl 1063.74512
[48] Cox, M. G., The numerical evaluation of B-splines, IMA J. Appl. Math., 10, 2, 134-149 (1972) · Zbl 0252.65007
[49] De Boor, C., On calculating with B-splines, J. Approx. Theory, 6, 1, 50-62 (1972) · Zbl 0239.41006
[50] Sowerby, R.; Duncan, J.; Chu, E., The modelling of sheet metal stampings, Int. J. Mech. Sci., 28, 7, 415-430 (1986)
[51] Guo, Y.; Batoz, J.; Detraux, J.; Duroux, P., Finite element procedures for strain estimations of sheet metal forming parts, Internat. J. Numer. Methods Engrg., 30, 8, 1385-1401 (1990) · Zbl 0716.73087
[52] Lee, C.; Huh, H., Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation, J. Mater. Process. Technol., 82, 1, 145-155 (1998)
[53] Lee, C.; Huh, H., Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming processes, J. Mater Process. Technol., 80, 76-82 (1998)
[54] Kim, S. H.; Kim, S. H.; Huh, H., Finite element inverse analysis for the design of intermediate dies in multi-stage deep-drawing processes with large aspect ratio, J. Mater Process. Technol., 113, 1, 779-785 (2001)
[55] Kim, S.; Huh, H., Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis, J. Mater. Process. Technol., 130, 482-489 (2002)
[56] Huang, Y.; Chen, Y.-P.; Du, R.-X., A new approach to solve key issues in multi-step inverse finite-element method in sheet metal stamping, Int. J. Mech. Sci., 48, 6, 591-600 (2006) · Zbl 1192.74358
[57] Bao, Y., Research on One Step Inverse Forming Fem and Crash Simulation of Auto Body Part (2005), Jilin University: Jilin University Changchun, (Ph. D. thesis)
[58] Zhu, X.-F.; Hu, P.; Ma, Z.-D.; Zhang, X.; Li, W.; Bao, J.; Liu, M., A new surface parameterization method based on one-step inverse forming for isogeometric analysis-suited geometry, Int. J. Adv. Manuf. Technol., 1-13 (2013)
[59] Wang, W.; Zhang, Y.; Xu, G.; Hughes, T. J., Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline, Comput. Mech., 50, 1, 65-84 (2012) · Zbl 1312.65197
[60] Zhu, X.-F.; Ma, Z.-D.; Hu, P., Nonconforming isogeometric analysis for trimmed CAD geometries using finite-element tearing and interconnecting algorithm, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 231, 8, 1371-1389 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.