×

Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide. (English) Zbl 1337.92180

Summary: In this paper, we propose and analyze a prey-predator system. Here the prey population is taken as pest and the predators are those eat the pests. Moreover we assume that the prey species is infected with a viral disease forming into susceptible and infected classes and infected prey is more vulnerable to predation by the predator. The dynamical behavior of this system both analytically and numerically is investigated from the point of view of stability and bifurcation. Then we explicitly introduce a control variable for pest control into the analysis by considering the associated control cost. In the nonconstant control case, we use Pontrygin’s Maximum principle to derive necessary conditions for the optimal control of the pest. Then we demonstrated the analytical results by numerical analysis and characterized the effects of the parameter values on optimal strategy.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
Full Text: DOI

References:

[1] Anderson, R. M.; May, R. M., Regulation and stability of host-parasite interactions, I. Regulatory processes, J. Anim. Ecol., 47, 219-247 (1978)
[2] Anderson, R. M.; May, R. M., The population dynamics of microparasite and their invertebrate hosts, Proc. R. Soc. London B, 291 (1981)
[3] Beltrami, E.; Carroll, T. O., Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol., 32, 857-863 (1994) · Zbl 0825.92122
[4] Beretta, E.; Kuang, Y., Modelling and analysis of a marine bacteriophage infection, Math. Biosci., 149, 57-74 (1998) · Zbl 0946.92012
[5] Bhattacharyya, S.; Bhattacharya, D. K., Pest control through viral disease: mathematical modeling and analysis, J. Theor. Biol., 238, 1, 177-196 (2006) · Zbl 1445.92310
[6] Bhattacharyya, S.; Bhattacharya, D. K., An improved integrated pest management model under 2-control parameters (sterile male and pesticide), Math. Biosci., 209, 256-281 (2007) · Zbl 1120.92042
[7] Birkoff, G.; Rota, G. C., Ordinary Differential Equations (1982), Ginn: Ginn Boston
[8] Bodine, E. N.; Gross, L. J.; lenhart, S., Optimal control applied to a model for species augmentation, Math. Biosci. Eng., 5, 4, 669-680 (2008) · Zbl 1153.49037
[9] Boethel, D. J.; Eikenbary, R. D., Interactions of Plant Resistence and Parasitoids and Predator of Insects (1986), Wiley: Wiley Chinchester, UK
[10] Burges, H. D.; Hussey, N. W., Microbial Control of Insects and Mites (1971), Academic Press: Academic Press New York
[11] Carr, J., Applications of Center Manifold Theory (1981), Springer: Springer New York · Zbl 0464.58001
[12] Chakraborty, K.; Jana, S.; Kar, T. K., Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting, Appl. Math. Comput., 218, 9271-9290 (2012) · Zbl 1246.92026
[13] Clark, C. W., Mathematical Bioeconomics: The Optimal Management of Renewable Resources (1990), John Wiley & Sons, Inc · Zbl 0712.90018
[14] Cory, J. S.; Halis, M. L.; Williams, T., Field trial of a genetically improved baculovirus insecticide, Nature, 370, 138-140 (1994)
[15] DeBach, P., Biological Control of Insect Pests and Weeds (1964), Chapman & Hall: Chapman & Hall London
[16] Gastrich, M. D.; Leigh-Bell, J. A.; Gobler, C. J.; Anderson, O. R.; Wilhelm, S. W.; Bryan, M., Viruses as potential regulators of regional brown tide blooms caused by the alga. Aureococcus anophagefferens, Estuaries, 27, 1, 112-119 (2004)
[17] Ghosh, S.; Bhattacharya, D. K., Optimization in microbial pest control: an integrated approach, Appl. Math. Modelling, 34, 1382-1395 (2010) · Zbl 1186.93048
[18] Ghosh, S.; Bhattacharyya, S.; Bhattacharya, D. K., The role of viral infection in pest control: a mathematical study, Bull. Math. Biol., 69, 2649-2691 (2007) · Zbl 1245.92054
[19] Gopal, M.; Gupta, A.; Sathiamma, B.; Nair, C. P.R., Control of the coconut pest Oryctes rhinoceros L. using the Oryctes virus, Insect Sci. Appl., 21, 2, 93-101 (2001)
[20] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields (1983), Springer: Springer New York · Zbl 0515.34001
[21] Hamilton, W. D.; Axelrod, R.; Tanese, R., Sexual reproduction as an adaptation to resist parasites (a review), Proc. Natl. Acad. Sci. United States of America, 87, 9, 3566-3573 (1990)
[22] Hassard, B. D.; Kazarinoff, Y. H.; Wan, Y. H., Theory and Applications of Hopf-bifurcation (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0474.34002
[23] Jacquet, S.; Heldal, M.; Iglesias-Rodriguez, D.; Larsen, A.; Wilson, W.; Bratbak, G., Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection, Aquat. Microb. Ecol., 27, 111-124 (2002)
[24] Joshi, H. R., Optimal control of an HIV immunology model, Optim. Con. Appl. Methods, 23, 199-213 (2002) · Zbl 1072.92509
[25] Jung, E.; Lenhart, S.; Feng, Z., Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Syst. Ser. B, 2-4, 473-482 (2002) · Zbl 1005.92018
[26] Kar, T. K.; Batabyal, A., Stability analysis and optimal control of an SIR epidemic model with vaccination, BioSystems, 104, 127-135 (2011)
[27] Lenhart, S.; Workman, J. T., Optimal Control Applied to Biological Models, Mathematical and Computational Biology Series (2007), Chapman & Hall/CRC · Zbl 1291.92010
[28] Lukes, D.L., 1982. Differential equations: classical to controlled. In: Mathematics in Science and Engineering, vol. 162. Academic Press, New York.; Lukes, D.L., 1982. Differential equations: classical to controlled. In: Mathematics in Science and Engineering, vol. 162. Academic Press, New York. · Zbl 0509.34003
[29] Malchow, H., Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics, Proc. R. Soc. London B, 251, 103-109 (1993)
[30] Malchow, H.; Hilker, F. M.; Petrovskii, S. V.; Brauer, K., Oscillations and waves in a virally infected plankton system. Part I: the lysogenic stage, Ecol. Complexity, 1, 3, 211-223 (2004)
[31] Pascual, M., Diffusion-induced chaos in a spatial predator-prey system, Proc. R. Soc. London B, 251, 1-7 (1993)
[32] Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; Mishchenko, E. F., The Mathematical Theory of Optimal Processes (1962), Wiley: Wiley New York · Zbl 0102.32001
[33] Ruan, S.; Ardito, A.; Ricciardi, P.; DeAngelis, D. L., Coexistence in competition models with density-dependent mortality, C. R. Biologies, 330, 845-854 (2007)
[34] Scheffer, M., Fish and nutrients interplay determines algal biomass: a minimal model, Oikos, 62, 271-282 (1991)
[35] Segel, L. A.; Jackson, J. L., Dissipative structure: an explanation and an ecological example, J. Theor. Biol., 37, 545-559 (1972)
[36] Singh, B. K.; Chattopadhyay, J.; Sinha, S., The role of virus infection in a simple phytoplankton zooplankton system, J. Theor. Biol., 231, 153-166 (2004) · Zbl 1447.92475
[37] Srinivasu, P. D.N.; Prasad, B. S.R. V., Role of quantity of additional food to the predators as a control in predator-prey system with relevance to pest management and biological conservation, Bull. Math. Biol., 73, 2249-2276 (2011) · Zbl 1334.92369
[38] Steele, J. H.; Henderson, E. W., A simple plankton model, Am. Nat., 117, 676-691 (1981)
[39] Tan, Y.; Chen, L., Modelling approach for biological control of insect pest by releasing infected pest, Chaos, Solitans and Fractals, 39, 304-315 (2009) · Zbl 1197.34011
[40] Vincent, T. L., Pest management programs via optimal control theory, Biometrics, 31, 1, 1-10 (1975) · Zbl 0307.92016
[41] Wang, X.; Song, X., Mathematical models for the control of a pest population by infected pest, Comput. Math. Appl., 56, 266-278 (2008) · Zbl 1145.92339
[42] Zhang, H.; Chen, L.; Nieto, J. J., A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Anal.: Real World Appl., 9, 1714-1726 (2008) · Zbl 1154.34394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.