×

Dynamics of an epidemic system with prey herd behavior and alternative resource to predator. (English) Zbl 1509.37127

Summary: A heterogeneous predator-prey system with herd behavior of prey is proposed. The predator individuals are affected by a disease. The predator is provided with alternative resources for long time survival. The objective of this study is to study the role of the alternative resource for controlling disease in a heterogeneous system. The dynamical behavior of the system is investigated throughout the theoretical studies and the results are verified using numerical simulations. The system is locally, as well as globally, stable under certain conditions. Also, the system undergoes Hopf bifurcation at a critical level of infection. The obtained results show that a disease-free system can be achieved by supplying a suitable alternative resource. The present study in an epidemic system introduces a new platform for controlling disease.

MSC:

37N25 Dynamical systems in biology
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Kot M 2001 Elements of Mathematical Ecology (Cambridge: Cambridge University Press) · Zbl 1060.92058 · doi:10.1017/CBO9780511608520
[2] Holling C S 1965 The functional response of invertebrate predator to prey density Mem. Ent. Soc. Can.45 3-60
[3] Hasting A and Powell T 1991 Chaos in three-species food chain Ecology72 896-903 · doi:10.2307/1940591
[4] Das M, Maiti A and Samanta G P 2018 Stability analysis of a prey-predator fractional order model incorporating prey refuge Ecol. Genet. Genomics7-8 33-46 · doi:10.1016/j.egg.2018.05.001
[5] Cosner C and DeAngelis D L 1999 Effects of spatial grouping on the functional-response of predators Theor. Pop. Biol.56 65-75 · Zbl 0928.92031 · doi:10.1006/tpbi.1999.1414
[6] Shaikh A A, Das H and Ali N 2018 Study of a predator – prey model with modified Leslie-Gower and Holling type III schemes Model. Earth Syst. Environ.4 527-33 · doi:10.1007/s40808-018-0441-1
[7] Sahoo B and Poria S 2014 Diseased prey predator model with general Holling type interactions Appl. Math. Comput.226 83-100 · Zbl 1354.92072 · doi:10.1016/j.amc.2013.10.013
[8] Sahoo B and Poria S 2014 Oscillatory coexistence of species in a food chain model with general Holling interactions Differ. Equ. Dyn. Syst.22 221-38 · Zbl 1300.34112 · doi:10.1007/s12591-013-0171-9
[9] Kooi B W and Venturino E 2016 Ecoepidemic predator – prey model with feeding satiation, prey herd behavior and abandoned infected prey Math. Biosci.274 58-72 · Zbl 1336.37029 · doi:10.1016/j.mbs.2016.02.003
[10] Schwarzl M et al 2016 A single predator charging a herd of prey: effects of self volume and predator – prey decision-making J. Phys. A: Math. Theor.49 225601 · Zbl 1342.92200 · doi:10.1088/1751-8113/49/22/225601
[11] Matia S N and Alam S 2013 Prey-predator dynamics under herd behavior of prey Univ. J. Appl. Math.1 251-7
[12] Biswas M A, Bachchu S, Maiti A and Alam S 2016 Large advantage of herd behavior of prey in prey-predator dynamics with disease in predator Int. J. Adv. Appl. Math. Mech.3 114-20 · Zbl 1367.92094
[13] Ajraldi V, Pittavino M and Venturino E 2011 Modeling herd behavior in population systems Nonlinear Anal. RWA.12 2319-38 · Zbl 1225.49037 · doi:10.1016/j.nonrwa.2011.02.002
[14] Braza P A 2012 Predator-prey dynamics with square root functional responses Nonlinear Anal.13 1837-43 · Zbl 1254.92072 · doi:10.1016/j.nonrwa.2011.12.014
[15] Venturino E 2002 Epidemics in predator – prey models: disease in the predators Math. Med. Biol.19 185-205 · Zbl 1014.92036 · doi:10.1093/imammb/19.3.185
[16] Chatterjee S, Ghosh A K and Chattopadhyay J 2006 Controlling disease in migratory bird population: a probable solution through mathematical study Dyn. Syst.21 265-88 · Zbl 1107.92046 · doi:10.1080/14689360500456279
[17] Numfor E, Hilker F M and Lenhart S 2017 Optimal culling and biocontrol in a predator – prey model Bull. Math. Biol.79 88-116 · Zbl 1373.92108 · doi:10.1007/s11538-016-0228-3
[18] Sharma S and Samanta G P 2015 A Leslie-Gower predator – prey model with disease in prey incorporating a prey refuge Chaos Soliton Fractals70 69-84 · Zbl 1352.92134 · doi:10.1016/j.chaos.2014.11.010
[19] Sahoo B and Poria S 2013 Disease control in a food chain model supplying alternative food Appl. Math. Model.37 5653-63 · Zbl 1274.92047 · doi:10.1016/j.apm.2012.11.017
[20] Chattopadhyay J and Bairagi N 2000 Pelicans at risk in Salton Sea—an eco-epidemiological model Ecol. Model.136 103-12 · doi:10.1016/S0304-3800(00)00350-1
[21] Das K P, Bairagi N and Sen P 2016 Role of alternative food in controlling chaotic dynamics in a predator – prey model with disease in the predator Int. J. Bifurcation Chaos26 1650147 · Zbl 1347.34074 · doi:10.1142/S0218127416501479
[22] Jaewook J and Lebowitz J L 2004 Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation Phys. Rev. E 69 066105 · doi:10.1103/PhysRevE.69.066105
[23] Sahoo B and Poria S 2014 Effects of supplying alternative food in a predator – prey model with harvesting Appl. Math. Comput.234 150-66 · Zbl 1298.92087 · doi:10.1016/j.amc.2014.02.039
[24] Das A and Samanta G P 2018 Modeling the fear effect on a stochastic preyâpredator system with additional food for the predator J. Phys. A: Math. Theor.51 465601 · doi:10.1088/1751-8121/aae4c6
[25] Jana D, Pathak R and Agarwal M 2016 On the stability and Hopf bifurcation of a prey-generalist predator system with independent age-selective harvesting Chaos Soliton Fractals83 252-73 · Zbl 1355.92090 · doi:10.1016/j.chaos.2015.12.008
[26] Sahoo B 2015 Role of additional food in eco-epidemiological system with disease in the prey Appl. Math. Comput.259 61-79 · Zbl 1390.92158 · doi:10.1016/j.amc.2015.02.038
[27] Hefferman J, Smith R and Wahl L 2005 Perspectives on the basic reproduction ratio J. R. Soc. Interfaces2 281-93 · doi:10.1098/rsif.2005.0042
[28] Hethcote H W, Wang W, Han L and Ma Z 2004 A predator – prey model with infected prey Theor. Pop. Biol.66 259-68 · doi:10.1016/j.tpb.2004.06.010
[29] Anderson R M and May R M 1986 The invasion, persistence and spread of infectious diseases within animal and plant communities Phil. Trans. R. Soc. B 314 533-70 · doi:10.1098/rstb.1986.0072
[30] Nagumo M 1994 Uber die Lage der Integralkurven gew onlicher Differential gleichungen Proc. Phys. Math. Soc.24 551 · Zbl 0061.17204
[31] Birkhoff G and Rota G C 1982 Ordinary Differential Equations (Boston: Ginn)
[32] Freedman H and Waltman P 1985 Persistent in model of three competitive populations Math. Biosci.73 89-101 · Zbl 0584.92018 · doi:10.1016/0025-5564(85)90078-1
[33] Butler G, Freedman H I and Waltman P 1986 Uniformly persistent systems Proc. Am. Math. Soc.96 425-30 · Zbl 0603.34043
[34] Kar T K, Ghorai A and Jana S 2012 Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide J. Theor. Biol.310 187-98 · Zbl 1337.92180 · doi:10.1016/j.jtbi.2012.06.032
[35] Bodine E N, Gross L J and Lenhart S 2008 Optimal control applied to a model forbspecies augmentation Math. Biosc. Eng.5 669-80 · Zbl 1153.49037 · doi:10.3934/mbe.2008.5.669
[36] Joshi H R 2002 Optimal control of an HIV immunology model Optim. Control Appl. Methods23 199-213 · Zbl 1072.92509 · doi:10.1002/oca.710
[37] Pontryagin L S, Boltyanskii V G, Gamkrelidze R V and Mishchenko E F 1962 The Mathematical Theory of Optimal Processes (New York: Wiley) · Zbl 0102.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.