×

Dynamical analysis of an allelopathic phytoplankton model with fear effect. (English) Zbl 07859964

Summary: This paper is the first to propose an allelopathic phytoplankton competition ODE model influenced by the fear effect based on natural biological phenomena. It is shown that the interplay of this fear effect and the allelopathic term cause rich dynamics in the proposed competition model, such as global stability, transcritical bifurcation, pitchfork bifurcation, and saddle-node bifurcation. We also consider the spatially explicit version of the model and prove analogous results. Numerical simulations verify the feasibility of the theoretical analysis. The results demonstrate that the primary cause of the extinction of non-toxic species is the fear of toxic species compared to toxins. Allelopathy only affects the density of non-toxic species. The discussion guides the conservation of species and the maintenance of biodiversity.

MSC:

34-XX Ordinary differential equations
37-XX Dynamical systems and ergodic theory

References:

[1] Antwi-Fordjour, K.; Parshad, RD; Beauregard, MA, Dynamics of a predator-prey model with generalized Holling type functional response and mutual interference, Math. Biosci., 326, 2020 · Zbl 1450.34030 · doi:10.1016/j.mbs.2020.108407
[2] Bodine, EN; Capaldi, A., Can culling barred owls save a declining northern spotted owl population?, Nat. Resour. Model., 30, 3, 2017 · Zbl 1542.92193 · doi:10.1111/nrm.12131
[3] Brown, JS; Laundré, JW; Gurung, M., The ecology of fear: optimal foraging, game theory, and trophic interactions, J. Mammal., 80, 2, 385-399, 1999 · doi:10.2307/1383287
[4] Biswas, S.; Tiwari, PK; Pal, S., Delay-induced chaos and its possible control in a seasonally forced eco-epidemiological model with fear effect and predator switching, Nonlinear Dyn., 104, 3, 2901-2930, 2021 · doi:10.1007/s11071-021-06396-1
[5] Cantrell, RS; Cosner, C., Spatial Ecology via Reaction-Diffusion Equations, 2004, Hoboken: Wiley, Hoboken · Zbl 1059.92051 · doi:10.1002/0470871296
[6] Chen, F., On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180, 33-49, 2005 · Zbl 1061.92058 · doi:10.1016/j.cam.2004.10.001
[7] Chesson, P.; Kuang, JJ, The interaction between predation and competition, Nature, 456, 235-238, 2008 · doi:10.1038/nature07248
[8] Chen, F.; Gong, X.; Chen, W., Extinction in two dimensional discrete Lotka-Volterra competitive system with the effect of toxic substances (II), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 20, 449-461, 2013 · Zbl 1277.39008
[9] Chen, F.; Chen, X.; Huang, S., Extinction of a two species non-autonomous competitive system with Beddington-DeAngelis functional response and the effect of toxic substances, Open Math., 14, 1157-1173, 2016 · Zbl 1357.34085 · doi:10.1515/math-2016-0099
[10] Chen, S.; Chen, F.; Li, Z.; Chen, L., Bifurcation analysis of an allelopathic phytoplankton model, J. Biol. Syst., 31, 3, 1063-1097, 2023 · Zbl 1530.92174 · doi:10.1142/S0218339023500365
[11] Chen, S.; Chen, F.; Srivastava, V.; Parshad, RD, Dynamical analysis of a Lotka-Volterra competition model with both Allee and fear effect, Int. J. Biomath., 2023 · doi:10.13140/RG.2.2.33238.11843
[12] Du, Y., Effects of a degeneracy in the competition model: Part I. Classical and generalized steady-state solutions, J. Differ. Equ., 181, 1, 92-132, 2002 · Zbl 1042.35016 · doi:10.1006/jdeq.2001.4074
[13] Du, Y., Effects of a degeneracy in the competition model: Part II. Perturbation and dynamical behaviour, J. Differ. Equ., 181, 1, 133-164, 2002 · Zbl 1042.35017 · doi:10.1006/jdeq.2001.4075
[14] Fistarol, GO; Legrand, C.; Rengefors, K.; Granéli, E., Temporary cyst formation in phytoplankton: A response to allelopathic competitors?, Environ. Microbiol., 6, 8, 791-798, 2004 · doi:10.1111/j.1462-2920.2004.00609.x
[15] Gilbarg, D.; Trudinger, NS; Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order, 1977, Berlin: Springer, Berlin · Zbl 0361.35003 · doi:10.1007/978-3-642-96379-7
[16] Gökçe, A., A mathematical model of population dynamics revisited with fear factor, maturation delay, and spatial coefficients, Math. Methods Appl. Sci., 45, 17, 11828-11848, 2022 · Zbl 1534.92054 · doi:10.1002/mma.8483
[17] Gökçe, A., Dynamical behaviour of a predator-prey system encapsulating the fear affecting death rate of prey and intra-specific competition: revisited in a fluctuating environment, J. Comput. Appl. Math., 421, 2023 · Zbl 1507.92075 · doi:10.1016/j.cam.2022.114849
[18] Henry, D., Geometric Theory of Semilinear Parabolic Equations, 2006, Berlin: Springer, Berlin
[19] Kishimoto, K.; Weinberger, HF, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differ. Equ., 58, 1, 15-21, 1985 · Zbl 0599.35080 · doi:10.1016/0022-0396(85)90020-8
[20] Kaur, RP; Sharma, A.; Sharma, AK, Impact of fear effect on plankton-fish system dynamics incorporating zooplankton refuge, Chaos Solitons Fract., 143, 2021 · Zbl 1498.92167 · doi:10.1016/j.chaos.2020.110563
[21] Lam, KY; Lou, Y., Introduction to Reaction-Diffusion Equations: Theory and Applications to Spatial Ecology and Evolutionary Biology, 2022, Berlin: Springer, Berlin · Zbl 1521.35001 · doi:10.1007/978-3-031-20422-7
[22] Legrand, C.; Rengefors, K.; Fistarol, GO; Graneli, E., Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects, Phycologia, 42, 406-419, 2003 · doi:10.2216/i0031-8884-42-4-406.1
[23] Long, LL; Wolfe, JD, Review of the effects of barred owls on spotted owls, J. Wildl. Manag., 83, 1281-1296, 2019 · doi:10.1002/jwmg.21715
[24] Lai, L.; Zhu, Z.; Chen, F., Stability and bifurcation in a predator-prey model with the additive Allee effect and the fear effect, Mathematics, 8, 1280, 2020 · doi:10.3390/math8081280
[25] Liu, T.; Chen, L.; Chen, F.; Li, Z., Stability analysis of a Leslie-Gower model with strong Allee effect on prey and fear effect on predator, Int. J. Bifurc. Chaos, 32, 2250082, 2022 · Zbl 1501.34045 · doi:10.1142/S0218127422500821
[26] Maynard-Smith, J., Models in Ecology, 1974, Cambridge: Cambridge University Press, Cambridge · Zbl 0312.92001
[27] Morgan, J., Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20, 5, 1128-1144, 1989 · Zbl 0692.35055 · doi:10.1137/0520075
[28] Mulderij, G.; Smolders, AJ; Van Donk, ELLEN, Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton, Freshw. Biol., 51, 554-561, 2006 · doi:10.1111/j.1365-2427.2006.01510.x
[29] Ma, Z.; Zhou, Y.; Li, C., Qualitative and Stability Methods of Ordinary Differential Equations, 2015, Beijing: Science Press, Beijing
[30] Mandal, A.; Biswas, S.; Pal, S., Toxicity-mediated regime shifts in a contaminated nutrient-plankton system, Chaos Interdiscip. J. Nonlinear Sci., 33, 2, 2023 · Zbl 07881233 · doi:10.1063/5.0122206
[31] Mandal, A.; Sk, N.; Biswas, S., Nutrient enrichment and phytoplankton toxicity influence a diversity of complex dynamics in a fear-induced plankton-fish model, J. Theor. Biol., 578, 2024 · Zbl 1530.92304 · doi:10.1016/j.jtbi.2023.111698
[32] Mandal, A.; Tiwari, PK; Pal, S., A nonautonomous model for the effects of refuge and additional food on the dynamics of phytoplankton-zooplankton system, Ecol. Complex., 46, 2021 · doi:10.1016/j.ecocom.2021.100927
[33] Parshad, RD; Antwi-Fordjour, K.; Takyi, EM, Some novel results in two species competition, SIAM J. Appl. Math., 81, 5, 1847-1869, 2021 · Zbl 1473.35055 · doi:10.1137/20M1387274
[34] Pierre, M., Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., 78, 417-455, 2010 · Zbl 1222.35106 · doi:10.1007/s00032-010-0133-4
[35] Peckarsky, BL; Abrams, PA; Bolnick, DI; Dill, LM; Grabowski, JH; Luttbeg, B.; Trussell, GC, Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions, Ecology, 89, 2416-2425, 2008 · doi:10.1890/07-1131.1
[36] Polis, GA; Myers, CA; Holt, RD, The ecology and evolution of intraguild predation: potential competitors that eat each other, Annu. Rev. Ecol. Syst., 20, 297-330, 1989 · doi:10.1146/annurev.es.20.110189.001501
[37] Perko, L., Differential Equations and Dynamical Systems, 2013, New York: Springer, New York
[38] Pradhan, B.; Ki, JS, Phytoplankton toxins and their potential therapeutic applications: a journey toward the quest for potent pharmaceuticals, Mar. Drugs, 20, 271, 2022 · doi:10.3390/md20040271
[39] Pringle, RM; Kartzinel, TR; Palmer, TM; Thurman, TJ; Fox-Dobbs, K.; Xu, CC, Predator-induced collapse of niche structure and species coexistence, Nature, 570, 58-64, 2019 · doi:10.1038/s41586-019-1264-6
[40] Sasmal, SK; Takeuchi, Y., Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl., 481, 1, 2020 · Zbl 1423.92222 · doi:10.1016/j.jmaa.2019.123471
[41] Saswati, B., Modeling the avoidance behavior of zooplankton on phytoplankton infected by free viruses, J. Biol. Phys., 46, 1-31, 2020 · doi:10.1007/s10867-020-09538-5
[42] Srivastava, V.; Takyi, EM; Parshad, RD, The effect of “fear” on two species competition, Math. Biosci. Eng., 20, 8814-8855, 2023 · doi:10.3934/mbe.2023388
[43] Srivastava, V., Van Lanen,N.J., Parshad, R.D.: Modeling competition co-occurrence effects between the invasive barred owl and imperiled northern spotted owl, In Preparation. (2024)
[44] Taylor, FJR, The biology of dinoflagellates, Bot. Monogr., 21, 723-731, 1987
[45] Van Lanen, NJ; Franklin, AB; Huyvaert, KP; Reiser, RF II; Carlson, PC, Who hits and hoots at whom? Potential for interference competition between barred and northern spotted owls, Biol. Conserv., 144, 2194-2201, 2011 · doi:10.1016/j.biocon.2011.05.011
[46] Wang, X.; Walton, JR; Parshad, RD, Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species, J. Biol. Dyn., 10, 1, 179-199, 2016 · Zbl 1448.92386 · doi:10.1080/17513758.2015.1115899
[47] Winder, M.; Sommer, U., Phytoplankton response to a changing climate, Hydrobiologia, 698, 5-16, 2012 · doi:10.1007/s10750-012-1149-2
[48] Wiens, JD; Anthony, RG; Forsman, ED, Competitive interactions and resource partitioning between northern spotted owls and barred owls in western Oregon, Wildl. Monogr., 185, 1-50, 2014 · doi:10.1002/wmon.1009
[49] Wang, X.; Zanette, L.; Zou, X., Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73, 1179-1204, 2016 · Zbl 1358.34058 · doi:10.1007/s00285-016-0989-1
[50] Zhang, Z.; Ding, T.; Huang, W.; Dong, Z., Qualitative Theory of Differential Equation, 1992, Beijing: Science Press, Beijing · Zbl 0779.34001
[51] Zhang, H.; Cai, Y.; Fu, S.; Wang, W., Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356, 328-337, 2019 · Zbl 1428.92099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.