×

Crossing patterns of semi-algebraic sets. (English) Zbl 1099.14048

A real semialgebraic set in \({\mathbb R}^d\) is described as a finite boolean combination of polynomial equalities and inequalities. The description complexity of such a set is at most \(k\) if in some representation the number of equalities and inequalities is at most \(k\), and each polynomial appearing in the representation has degree at most \(k\).
The authors prove that for every family \(\mathcal F\) of \(n\) semialgebraic sets in \({\mathbb R}^d\) there exists a positive constant \(\epsilon\) that depends on the maximum description complexity of the elements of \(\mathcal F\), and two subfamilies \({\mathcal F}_1, {\mathcal F}_2 \subset {\mathcal F}\) with at least \(\epsilon n\) elements each, such that either every element of \({\mathcal F}_1\) intersects all elements of \({\mathcal F}_2\) or no element of \({\mathcal F}_1\) intersects any element of \({\mathcal F}_2\). Moreover, the authors prove this result when the intersection relation is substituted by any other semialgebraic relation.
The proof of this result uses a standard linearization process to transform the elements of \(\mathcal F\) into vectors of a higher dimensional space, see the paper of P. K. Agarwal and J. Matousek [Discrete Comput. Geom. 11, 393–418 (1994; Zbl 0806.68106)] and the partition theorem of Yao and Yao [in: Proceedings of the 17th Annual ACM Symposium on Theory of Computing, 163–168 (1983)]. The authors also give a second proof using the results of Agarwal and Matousek on range searching with semialgebraic sets.
A useful corollary of the main result is the existence of a constant \(\delta\), which depends only on the maximum description complexity of the elements of \(\mathcal F\), such that \(\mathcal F\) has a subset \({\mathcal F}'\) with \(n^\delta\) elements, so that every pair of elements of \({\mathcal F}'\) intersect each other or the elements of \({\mathcal F}'\) are pairwise disjoint.
These results are applied to several problems in discrete geometry and in Ramsey theory.

MSC:

14P10 Semialgebraic sets and related spaces
05D10 Ramsey theory
55M20 Fixed points and coincidences in algebraic topology

Citations:

Zbl 0806.68106
Full Text: DOI

References:

[1] Agarwal, P. K.; Sharir, M., Arrangements and their applications, (Sack, J.-R.; Urrutia, J., Handbook of Computational Geometry (2000), Elsevier Science: Elsevier Science North-Holland, Amsterdam), 49-119 · Zbl 0948.52011
[2] Agarwal, P. K.; Erickson, J., Geometric range searching and its relatives, (Chazelle, B.; Goodman, J. E.; Pollack, R., Advances in Discrete and Computational Geometry (1998), AMS Press: AMS Press Providence, RI), 1-56 · Zbl 0916.68031
[3] Agarwal, P. K.; Matoušek, J., Range searching with semialgebraic sets, Discrete Comput. Geom., 11, 393-418 (1994) · Zbl 0806.68106
[4] Alon, N., Ramsey graphs cannot be defined by real polynomials, J. Graph Theory, 14, 651-661 (1990) · Zbl 0743.05025
[5] Alon, N.; Katchalski, M.; Scheinerman, E. R., Not all graphs are segment T-graphs, European J. Combin., 11, 7-13 (1990) · Zbl 0802.05075
[6] Alon, N.; Pach, J.; Solymosi, J., Ramsey-type theorems with forbidden subgraphs, Combinatorica, 21, 155-170 (2001) · Zbl 0989.05124
[7] Aronov, B.; Erdős, P.; Goddard, W.; Kleitman, D. J.; Klugerman, M.; Pach, J.; Schulman, L. J., Crossing families, Combinatorica, 14, 127-134 (1994) · Zbl 0804.52010
[8] L. Babai, Open problem, in: Proceeding of the Conference in Keszthely, Hungary, 1976, vol. 2, North-Holland, Amsterdam, 1978, p. 1189.; L. Babai, Open problem, in: Proceeding of the Conference in Keszthely, Hungary, 1976, vol. 2, North-Holland, Amsterdam, 1978, p. 1189.
[9] Basu, S.; Pollack, R.; Roy, M.-F., Algorithms in Real Algebraic Geometry (2003), Springer: Springer Berlin · Zbl 1031.14028
[10] de Berg, M.; van Kreveld, M.; Overmars, M.; Schwarzkopf, O., Computational GeometryAlgorithms and Applications (2000), Springer: Springer Heidelberg · Zbl 0939.68134
[11] Bochnak, J.; Coste, M.; Roy, M.-F., Real Algebraic Geometry (1998), Springer: Springer Berlin, (translated from the 1987 French original) · Zbl 0633.14016
[12] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, A singly exponential stratification scheme for real semi-algebraic varieties and its applications, Proceedings of the 16th International Colloqium on Automata, Languages and Programming, 1989, pp. 179-193 (also in Theoret. Comput. Sci. 84 (1991) 77-105).; B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, A singly exponential stratification scheme for real semi-algebraic varieties and its applications, Proceedings of the 16th International Colloqium on Automata, Languages and Programming, 1989, pp. 179-193 (also in Theoret. Comput. Sci. 84 (1991) 77-105). · Zbl 0702.68064
[13] Chazelle, B.; Edelsbrunner, H.; Guibas, L. J.; Sharir, M.; Stolfi, J., Lines in spacecombinatorics and algorithms, Algorithmica, 5, 428-447 (1996) · Zbl 0846.68098
[14] Corneil, D. G.; Perl, Y.; Stewart, L. K., A linear recognition algorithm for cographs, SIAM J. Comput., 14, 926-934 (1985) · Zbl 0575.68065
[15] Clarkson, K. L.; Shor, P. W., Applications of random sampling in computational geometry, II, Discrete Comput. Geom., 4, 387-421 (1989) · Zbl 0681.68060
[16] Ehrlich, G.; Even, S.; Tarjan, R. E., Intersection graphs of curves in the plane, J. Combinat. Theory, 21, 8-20 (1976) · Zbl 0348.05113
[17] Erdős, P., Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53, 292-294 (1947) · Zbl 0032.19203
[18] Erdős, P.; Hajnal, A., Ramsey-type theorems, Discrete Appl. Math., 25, 37-52 (1989) · Zbl 0715.05052
[19] Erdős, P.; Hajnal, A.; Pach, J., A Ramsey-type theorem for bipartite graphs, Geombinatorics, 10, 64-68 (2000) · Zbl 0978.05052
[20] Erdős, P.; Szekeres, G., A combinatorial problem in geometry, Compositio Math., 2, 463-470 (1935) · Zbl 0012.27010
[21] Gyárfás, A., Reflections on a problem of Erdős and Hajnal, (Graham, R. L.; Nešetřil, J., The Mathematics of Paul Erdős Algorithms and Combinatorics 14, vol. II (1997), Springer: Springer Heidelberg), 93-98 · Zbl 0863.05047
[22] Harper, L. H., Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory, 1, 385-394 (1966) · Zbl 0158.20802
[23] V. Koltun, Almost tight upper bounds for vertical decomposition in four dimensions, Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, 2001, pp. 56-65.; V. Koltun, Almost tight upper bounds for vertical decomposition in four dimensions, Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, 2001, pp. 56-65.
[24] Matoušek, J., Using the Borsuk-Ulam Theorem Lectures on Topological Methods in Combinatorics and Geometry (2003), Springer: Springer Heidelberg · Zbl 1016.05001
[25] Pach, J.; Pollack, R.; Welzl, E., Weaving patterns of lines and line segments in space, Algorithmica, 9, 561-571 (1993) · Zbl 0788.68146
[26] P. Pudlak, V. Rödl, Pseudorandom sets and explicit constructions of Ramsey graphs, Quderni di Matematica, Università di Napoli, to appear.; P. Pudlak, V. Rödl, Pseudorandom sets and explicit constructions of Ramsey graphs, Quderni di Matematica, Università di Napoli, to appear. · Zbl 1074.05088
[27] Pach, J.; Solymosi, J., Crossing patterns of segments, J. Combin. Theory, Ser. A, 96, 316-325 (2001) · Zbl 0989.05031
[28] Pach, J.; Tardos, G., Cutting glass, Discrete Comput. Geom., 24, 481-495 (2000) · Zbl 0956.68146
[29] Sharir, M., The Clarkson-Shor technique revisited and extended, Combin. Probab. Comput., 12, 191-201 (2003) · Zbl 1031.60011
[30] Schechtman, G., Concentration results and applications, (Handbook of the Geometry of Banach Spaces, vol. 2 (2003), North-Holland: North-Holland Amsterdam), 1603-1634 · Zbl 1057.46011
[31] Sharir, M.; Agarwal, P. K., Davenport-Schinzel Sequences and their Geometric Applications (1995), Cambridge University Press: Cambridge University Press New York · Zbl 0834.68113
[32] A.C. Yao, F.F. Yao, A general approach to \(d\); A.C. Yao, F.F. Yao, A general approach to \(d\)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.