×

Forecasting electricity demand in Japan: a Bayesian spatial autoregressive ARMA approach. (English) Zbl 1284.91475

Summary: Regional electricity demand in Japan and spatial interaction among the regions using a Bayesian approach were examined. A spatial autoregressive (SAR) ARMA model was proposed to consider the features of electricity demand in Japan and a strategy of Markov chain Monte Carlo (MCMC) methods was constructed to estimate the parameters of the model. From empirical results, the spatial autoregressive ARMA\((1, 1)\) model was selected, and it was found that spatial interaction plays an important role in electricity demand in Japan. Moreover, log predictive density showed that this SAR-ARMA model performs better than a univariate ARMA model. It was confirmed that the space-time model improves the performance of forecasting future electricity demand in Japan.

MSC:

91B84 Economic time series analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P20 Applications of statistics to economics

Software:

Ox
Full Text: DOI

References:

[1] Anselin, L.; Florax, R. J.G. M., Small sample properties of tests for spatial dependence in regression models: Some further results, (Anselin, L.; Florax, R. J.G. M., New Directions is Spatial Econometrics (1995), Springer: Springer Berlin), 21-74 · Zbl 0878.62096
[2] Anselin, L., Spatial Econometrics: Methods and Models (1988), Kluwer: Kluwer Dordrecht
[3] Anselin, L., Spatial econometrics, (Baltagi, B., A Companion to Theoretical Econometrics (2001), Basil Blackwell: Basil Blackwell Oxford), 310-330
[4] Cancelo, J. R.; Espasa, Antoni; Grafe, Rosmarie, Forecasting the electricity load from one day to one week ahead for the Spanish system operator, International Journal of Forecasting, 24, 4, 588-602 (2008)
[5] Chib, S.; Greenberg, E., Bayes inference in regression models with ARMA \((p, q)\) errors, Journal of Econometrics, 64, 1-2, 183-206 (1994) · Zbl 0807.62065
[6] Chib, S.; Greenberg, E., Analysis of multivariate probit models, Biometrika, 85, 2, 347-361 (1998) · Zbl 0938.62020
[7] Cottet, R.; Smith, M., Bayesian modeling and forecasting of intraday electricity load, Journal of the American Statistical Association, 98, 464, 839-849 (2003)
[8] Darbellay, G.; Slama, M., Forecasting the short-term demand for electricity: Do neural networks stand a better chance?, International Journal of Forecasting, 16, 1, 71-83 (2000)
[9] Doornik, J. A., Ox: Object Oriented Matrix Programming Language (2006), Timberlake Consultants Press: Timberlake Consultants Press London
[10] Dordonnat, V.; Koopman, S. J.; Ooms, M.; Dessertaine, A.; Collet, J., An hourly periodic state space model for modelling French national electricity load, International Journal of Forecasting, 24, 4, 566-587 (2008)
[11] Elhorst, J. P., Dynamic models in space and time, Geographical Analysis, 33, 2, 119-140 (2001)
[12] Erdogdu, E., Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey, Energy Policy, 35, 2, 1129-1146 (2007)
[13] Fay, D.; Ringwood, J. V.; Condon, M.; Kelly, M., 24-h electric load data —A sequential or partitioned time series?, Neurocomputing, 55, 469-498 (2003)
[14] Gelfand, A. E.; Dey, D. K., Bayesian model choice: Asymptotics and exact calculations, Journal of the Royal Statistical Society Ser.B, 56, 501-514 (1994) · Zbl 0800.62170
[15] Gelfand, A. E.; Banerjee, S.; Sirmans, C. F.; Tu, Y.; Ong, S. E., Multilevel modeling using spatial processes: Application to the Singapore housing market, Computational Statistics & Data Analysis, 51, 7, 3567-3579 (2007) · Zbl 1161.62451
[16] Geweke, J., Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, (Bernardo, J. M.; Berger, J. O.; Dawid, A. P.; Smith, A. F.M., Bayesian Statistics 4 (1992), Oxford University Press: Oxford University Press Oxford), 169-193
[17] Geweke, J., Using simulation methods for Bayesian econometric models: Inference, development, and communication, Econometric Reviews, 18, 1, 1-73 (1999) · Zbl 0930.62105
[19] Giacomini, R.; Granger, C. W.J., Aggregation of space-time processes, Journal of Econometrics, 118, 1-2, 7-26 (2004) · Zbl 1034.62092
[20] Haldrup, N.; Nielsen, M.Ø., A regime switching long memory model for electricity prices, Journal of Econometrics, 135, 1-2, 349-376 (2006) · Zbl 1418.62458
[21] Harvey, A.; Koopman, S., Forecasting hourly electricity demand using time-varying splines, Journal of the American Statistical Association, 88, 1228-1253 (1993)
[22] Holloway, G.; Shankar, B.; Rahman, S., Bayesian spatial probit estimation: A primer and an application to HYV rice adoption, Agricultural Economics, 27, 3, 383-402 (2002)
[23] LeSage, J.; Banerjee, S.; Fischer, M. M.; Congdon, P., Spatial statistics: Methods, models & computation, Computational Statistics & Data Analysis, 53, 8, 2781-2785 (2009) · Zbl 1453.00023
[24] Liu, J. M.; Chen, R.; Liu, M. L.; Harris, J. L., A semi-parametric time series approach in modeling hourly electricity loads, Journal of Forecasting, 25, 8, 537-559 (2006)
[25] Nakatsuma, T., Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach, Journal of Econometrics, 95, 1, 57-69 (2000) · Zbl 0970.62014
[26] Nogales, F. J.; Contreras, J.; Conejo, A.; Espínola, R., Forecasting next-day electricity prices by time series models, IEEE Transactions on Power Systems, 17, 2, 342-348 (2002)
[27] Nowicka-Zagrajek, J.; Weron, R., Modeling electricity loads in California: ARMA models with hyperbolic noise, Signal Processing, 82, 12, 1903-1915 (2002) · Zbl 1023.91040
[28] Pace, R. K.; LeSage, J. P., Chebyshev approximation of log-determinants of spatial weight matrices, Computational Statistics & Data Analysis, 45, 2, 179-196 (2004) · Zbl 1430.62213
[29] Pappas, S. S.; Ekonomou, L.; Karamousantas, D. C.; Chatzarakis, G. E.; Katsikas, S. K.; Liatsis, P., Electricity demand loads modeling using autoregressive moving average(ARMA) models, Energy, 33, 9, 1353-1360 (2008)
[30] Pezzulli, S.; Frederic, P.; Majithia, S.; Sabbagh, S.; Black, E., The seasonal forecast of electricity demand: A hierarchical Bayesian model with climatological weather generator, Applied Stochastic Models Business and Industry, 22, 113-125 (2006) · Zbl 1114.62135
[31] Ramanathan, R.; Engle, R.; Granger, C.; Vahid-Araghi, F.; Brace, C., Short-run forecasts of electricity loads and peaks, International Journal of Forecasting, 13, 2, 161-174 (1997)
[32] Smirnov, O.; Anselin, L., Fast maximum likelihood estimation of very large spatial autoregressive models: A characteristic polynomial approach, Computational Statistics & Data Analysis, 35, 3, 301-319 (2001) · Zbl 1080.62539
[34] Taylor, J. W.; de Menezes, L. M.; McSharry, P. E., A comparison of univariate methods for forecasting electricity demand up to a day ahead, International Journal of Forecasting, 22, 1, 1-16 (2006)
[35] Tsurumi, H.; Radchenko, S., Relationships among the foreign exchange rates after the asian financial crisis-applications of unit root tests, cointegration tests and VAR, (Wago, H., Econometric Applications of MCMC Algorithms (2005), Toyo Keizai Shimposha: Toyo Keizai Shimposha Tokyo, Japan), 101-125, (in Japanese)
[36] Xiao, Ni.; Zarnikau, J.; Damien, P., Testing functional forms in energy modeling: An application of the Bayesian approach to US electricity demand, Energy Economics, 29, 2, 158-166 (2007)
[37] Yamamoto, T., Time Series Analysis in Economics (1988), Sobunsha: Sobunsha Tokyo, Japan, (in Japanese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.