×

Why is maximum clique often easy in practice? (English) Zbl 1457.90166

Summary: To this day, the maximum clique problem remains a computationally challenging problem. Indeed, despite researchers’ best efforts, there exist unsolved benchmark instances with 1,000 vertices. However, relatively simple algorithms solve real-life instances with millions of vertices in a few seconds. Why is this the case? Why is the problem apparently so easy in many naturally occurring networks? In this paper, we provide an explanation. First, we observe that the graph’s clique number \(\omega\) is very near to the graph’s degeneracy \(d\) in most real-life instances. This observation motivates a main contribution of this paper, which is an algorithm for the maximum clique problem that runs in time polynomial in the size of the graph, but exponential in the gap \(g := ( d + 1 ) - \omega\) between the clique number \(\omega\) and its degeneracy-based upper bound \(d+1\). When this gap \(g\) can be treated as a constant, as is often the case for real-life graphs, the proposed algorithm runs in time \(O ( d m ) = O ( m^{1.5} )\). This provides a rigorous explanation for the apparent easiness of these instances despite the intractability of the problem in the worst case. Further, our implementation of the proposed algorithm is actually practical – competitive with the best approaches from the literature.

MSC:

90C35 Programming involving graphs or networks
90C27 Combinatorial optimization
Full Text: DOI

References:

[1] Abello J, Pardalos PM, Resende MGC (1999) On maximum clique problems in very large graphs. Abello JM, Vitter JS, ed. External Memory Algorithms (American Mathematical Society, Providence, RI), 119-130.Google Scholar · Zbl 0947.68119
[2] Abu-Khzam FN, Collins RL, Fellows MR, Langston MA, Suters WH, Symons CT (2004) Kernelization algorithms for the vertex cover problem: Theory and experiments. Arge L, Italiano GF, Sedgewick R, eds. Proc. 6th Workshop Algorithm Engrg. Experiments (ALENEX) (SIAM, Philadelphia), 62-69.Google Scholar
[3] Achterberg T (2007) Constraint integer programming. PhD thesis, Technische Universität Berlin, Berlin.Google Scholar · Zbl 1430.90427
[4] Akiba T, Iwata Y (2016) Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover. Theoret. Comput. Sci. 609(1):211-225.Crossref, Google Scholar · Zbl 1331.68281 · doi:10.1016/j.tcs.2015.09.023
[5] Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:Article 2.Crossref, Google Scholar · doi:10.1186/1471-2105-4-2
[6] Balasubramanian R, Fellows M, Raman V (1998) An improved fixed-parameter algorithm for vertex cover. Inform. Processing Lett. 65(3):163-168.Crossref, Google Scholar · Zbl 1337.05095 · doi:10.1016/S0020-0190(97)00213-5
[7] Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509-512.Crossref, Google Scholar · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[8] Bar-Yehuda R, Even S (1985) A local-ratio theorem for approximating the weighted vertex cover problem. Ausiello G, Lucertini M, eds. Analysis and Design of Algorithms for Combinatorial Problems (North Holland Publising Co., Amsterdam),27-45.Crossref, Google Scholar · Zbl 0557.90072 · doi:10.1016/S0304-0208(08)73101-3
[9] Batagelj V, Zaversnik M (2003) An O(m) algorithm for cores decomposition of networks. Preprint, submitted October 25, https://arxiv.org/abs/cs/0310049.Google Scholar
[10] Björklund A, Husfeldt T, Koivisto M (2009) Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2):546-563.Crossref, Google Scholar · Zbl 1215.05056 · doi:10.1137/070683933
[11] Bomze IM, Budinich M, Pardalos PM, Pelillo M (1999) The maximum clique problem. Du DZ, Pardalos PM, eds. Handbook of Combinatorial Optimization (Springer-Verlag, Boston), 1-74.Crossref, Google Scholar · Zbl 1253.90188 · doi:10.1007/978-1-4757-3023-4_1
[12] Bonato A, Hadi N, Horn P, Prałat P, Wang C (2009) Models of online social networks. Internet Math. 6(3):285-313.Crossref, Google Scholar · Zbl 1235.68036 · doi:10.1080/15427951.2009.10390642
[13] Borchers B (1999) CSDP, a C library for semidefinite programming. Optim. Methods Software 11(1-4):613-623.Crossref, Google Scholar · Zbl 0973.90524 · doi:10.1080/10556789908805765
[14] Borchers B (2017) CSDP 6.2 user’s guide. Accessed January 20, 2020, https://github.com/coin-or/Csdp/blob/master/doc/csdpuser.pdf.Google Scholar
[15] Buchanan A, Walteros JL, Butenko S, Pardalos PM (2014) Solving maximum clique in sparse graphs: an O(nm+n2d/4) algorithm for d-degenerate graphs. Optim. Lett. 8(5):1611-1617.Crossref, Google Scholar · Zbl 1303.05184 · doi:10.1007/s11590-013-0698-2
[16] Buss JF, Goldsmith J (1993) Nondeterminism within P. SIAM J. Comput. 22(3):560-572.Crossref, Google Scholar · Zbl 0773.68031 · doi:10.1137/0222038
[17] Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9(6):375-382.Crossref, Google Scholar · Zbl 0711.90080 · doi:10.1016/0167-6377(90)90057-C
[18] Chen J, Kanj IA, Jia W (2001) Vertex cover: Further observations and further improvements. J. Algorithms 41(2):280-301.Crossref, Google Scholar · Zbl 1017.68087 · doi:10.1006/jagm.2001.1186
[19] Chen J, Kanj IA, Xia G (2010) Improved upper bounds for vertex cover. Theoret. Comput. Sci. 411(40):3736-3756.Crossref, Google Scholar · Zbl 1205.05217 · doi:10.1016/j.tcs.2010.06.026
[20] Chen J, Fernau H, Kanj IA, Xia G (2007) Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4):1077-1106.Crossref, Google Scholar · Zbl 1141.05075 · doi:10.1137/050646354
[21] Chor B, Fellows M, Juedes D (2004) Linear kernels in linear time, or how to save k colors in O(n2) steps. Hromkovič J, Nagl M, eds. Proc. 30th Internat. Conf. Graph-Theoretic Concepts Comput. Sci. (Springer Berlin, Heidelberg), 257-269.Google Scholar · Zbl 1112.68412
[22] Cohen J (2008) Trusses: Cohesive subgraphs for social network analysis. Technical Report 16 (National Security Agency, Fort Meade, MD).Google Scholar
[23] Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems 1695(5):1-9.Google Scholar
[24] Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015) Parameterized Algorithms (Springer, New York).Crossref, Google Scholar · Zbl 1334.90001 · doi:10.1007/978-3-319-21275-3
[25] Dailey DP (1980) Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Math. 30(3):289-293.Crossref, Google Scholar · Zbl 0448.05030 · doi:10.1016/0012-365X(80)90236-8
[26] Dell H, Van Melkebeek D (2014) Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4):Article 23.Crossref, Google Scholar · Zbl 1321.68274 · doi:10.1145/2629620
[27] Downey RG, Fellows MR (1999) Parameterized Complexity (Springer-Verlag, New York).Crossref, Google Scholar · doi:10.1007/978-1-4612-0515-9
[28] Eppstein D, Löffler M, Strash D (2013) Listing all maximal cliques in large sparse real-world graphs. ACM J. Experiment. Algorithmics 18(3):3.1.Google Scholar · Zbl 1365.05276
[29] Erdös P, Hajnal A (1966) On chromatic number of graphs and set-systems. Acta Math. Hungar. 17(1-2):61-99.Crossref, Google Scholar · Zbl 0151.33701 · doi:10.1007/BF02020444
[30] Freuder EC (1982) A sufficient condition for backtrack-free search. J. ACM 29(1):24-32.Crossref, Google Scholar · Zbl 0477.68063 · doi:10.1145/322290.322292
[31] Garey MR, Johnson DS, Stockmeyer L (1976) Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1(3):237-267.Crossref, Google Scholar · Zbl 0338.05120 · doi:10.1016/0304-3975(76)90059-1
[32] Håstad J (1999) Clique is hard to approximate within O(n1−ɛ). Acta Math. 182(1):105-142.Crossref, Google Scholar · Zbl 0989.68060 · doi:10.1007/BF02392825
[33] Iwata Y, Oka K, Yoshida Y (2014) Linear-time FPT algorithms via network flow. Proc. 25th Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadephia), 1749-1761.Google Scholar · Zbl 1423.68572
[34] Kirousis LM, Thilikos DM (1996) The linkage of a graph. SIAM J. Comput. 25(3):626-647.Crossref, Google Scholar · Zbl 0851.68035 · doi:10.1137/S0097539793255709
[35] Knuth DE (1994) The sandwich theorem. Electron. J. Combin. 1(1):1.Crossref, Google Scholar · Zbl 0810.05065 · doi:10.37236/1193
[36] Konc J, Janežič D (2007) An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math. Comput. Chem. 58(3):569-590.Google Scholar · Zbl 1274.05452
[37] Li CM, Quan Z (2010) An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem. Proc. 24th AAAI Conf. Artificial Intelligence (AAAI Press, Palo Alto, CA), 128-133.Google Scholar
[38] Li W, Zhu B (2018) A 2k-kernelization algorithm for vertex cover based on crown decomposition. Theoret. Comput. Sci. 739:80-85.Crossref, Google Scholar · Zbl 1395.68154 · doi:10.1016/j.tcs.2018.05.004
[39] Lick DR, White AT (1970) k-degenerate graphs. Canadian J. Math. 22(5):1082-1096.Crossref, Google Scholar · Zbl 0202.23502 · doi:10.4153/CJM-1970-125-1
[40] Lieder F, Rad FBA, Jarre F (2015) Unifying semidefinite and set-copositive relaxations of binary problems and randomization techniques. Comput. Optim. Appl. 61(3):669-688.Crossref, Google Scholar · Zbl 1346.90603 · doi:10.1007/s10589-015-9731-y
[41] Lovász L (1979) On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(1):1-7.Crossref, Google Scholar · Zbl 0395.94021 · doi:10.1109/TIT.1979.1055985
[42] Manoussakis G (2014) The clique problem on inductive k-independent graphs. Preprint, submitted October 13, https://arxiv.org/abs/1410.3302.Google Scholar
[43] Manoussakis G (2016) New algorithms for cliques and related structures in k-degenerate graphs. Preprint, submitted April 4, https://arxiv.org/abs/1501.01819v4.Google Scholar
[44] Matula DW, Beck LL (1983) Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30(3):417-427.Crossref, Google Scholar · Zbl 0628.68054 · doi:10.1145/2402.322385
[45] Mittelmann H (2018) Benchmarks for optimization software. Accessed January 20, 2020, http://plato.asu.edu/bench.html.Google Scholar
[46] Nagamochi H (2010) Minimum degree orderings. Algorithmica 56(1):17-34.Crossref, Google Scholar · Zbl 1187.68352 · doi:10.1007/s00453-008-9239-2
[47] Nemhauser GL, Trotter LE Jr (1975) Vertex packings: structural properties and algorithms. Math. Programming 8(1):232-248.Crossref, Google Scholar · Zbl 0314.90059 · doi:10.1007/BF01580444
[48] Niedermeier R, Rossmanith P (2000) A general method to speed up fixed-parameter-tractable algorithms. Inform. Processing Lett. 73(3):125-129.Crossref, Google Scholar · Zbl 1014.68064 · doi:10.1016/S0020-0190(00)00004-1
[49] Östergård PRJ (2002) A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120(1):197-207.Crossref, Google Scholar · Zbl 1019.05054 · doi:10.1016/S0166-218X(01)00290-6
[50] Pattabiraman B, Patwary MMA, Gebremedhin AH, Liao WK, Choudhary A (2013) Fast algorithms for the maximum clique problem on massive sparse graphs. Bonato A, Mitzenmacher M, Prałat P, eds. International Workshop on Algorithms and Models for the Web-Graph (Springer, Heidelberg), 156-169.Google Scholar · Zbl 1342.05185
[51] Prosser P (2012) Exact algorithms for maximum clique: A computational study. Algorithms (Basel) 5(4):545-587.Crossref, Google Scholar · Zbl 1461.90162 · doi:10.3390/a5040545
[52] Pulleyblank WR (1979) Minimum node covers and 2-bicritical graphs. Math. Programming 17(1):91-103.Crossref, Google Scholar · Zbl 0414.90066 · doi:10.1007/BF01588228
[53] Robson JM (2001) Finding a maximum independent set in time O(2n/4). Technical report, LaBRI, Université de Bordeaux I.Google Scholar
[54] Rossi RA (2014) Fast triangle core decomposition for mining large graphs. Tseng VS, Ho TB, Zhou Z-H, Chen ALP, Kao H-Y, eds. Pacific-Asia Conf. Knowledge Discovery Data Mining (Springer, Heidelberg), 310-322.Google Scholar
[55] Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. Proc. 29th AAAI Conf. Artificial Intelligence (AAAI Press, Palo Alto, CA), 4292-4293.Google Scholar
[56] Rossi RA, Gleich DF, Gebremedhin AH (2015) Parallel maximum clique algorithms with applications to network analysis. SIAM J. Sci. Comput. 37(5):C589-C616.Crossref, Google Scholar · Zbl 1323.05103 · doi:10.1137/14100018X
[57] San Segundo P, Lopez A, Pardalos PM (2016) A new exact maximum clique algorithm for large and massive sparse graphs. Comput. Oper. Res. 66:81-94.Crossref, Google Scholar · Zbl 1349.90824 · doi:10.1016/j.cor.2015.07.013
[58] San Segundo P, Nikolaev A, Batsyn M (2015) Infra-chromatic bound for exact maximum clique search. Comput. Oper. Res. 64:293-303.Crossref, Google Scholar · Zbl 1349.90825 · doi:10.1016/j.cor.2015.06.009
[59] San Segundo P, Artieda J, Batsyn M, Pardalos PM (2017a) An enhanced bitstring encoding for exact maximum clique search in sparse graphs. Optim. Methods Software 32(2):312-335.Crossref, Google Scholar · Zbl 1365.05162 · doi:10.1080/10556788.2017.1281924
[60] San Segundo P, Lopez A, Artieda J, Pardalos PM (2017b) A parallel maximum clique algorithm for large and massive sparse graphs. Optim. Lett. 11(2):343-358.Crossref, Google Scholar · Zbl 1370.90227 · doi:10.1007/s11590-016-1019-3
[61] Savelsbergh MWP (1994) Preprocessing and probing techniques for mixed integer programming problems. ORSA J. Comput. 6(4):445-454.Link, Google Scholar · Zbl 0814.90093
[62] Seidman SB (1983) Network structure and minimum degree. Soc. Networks 5(3):269-287.Crossref, Google Scholar · doi:10.1016/0378-8733(83)90028-X
[63] Sloane NJA (2017) Challenge problems: Independent sets in graphs. Accessed Janary 20, 2020, https://oeis.org/A265032/a265032.html.Google Scholar
[64] Szekeres G, Wilf HS (1968) An inequality for the chromatic number of a graph. J. Combin. Theory 4(1):1-3.Crossref, Google Scholar · Zbl 0171.44901 · doi:10.1016/S0021-9800(68)80081-X
[65] Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J. Global Optim. 37(1):95-111.Crossref, Google Scholar · Zbl 1127.90079 · doi:10.1007/s10898-006-9039-7
[66] Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M (2010) A simple and faster branch-and-bound algorithm for finding a maximum clique. Rahman MS, Fujita S, eds. WALCOM: Algorithms and Computation (Springer, Berlin), 191-203.Crossref, Google Scholar · Zbl 1274.05455 · doi:10.1007/978-3-642-11440-3_18
[67] Verma A, Buchanan A, Butenko S (2015) Solving the maximum clique and vertex coloring problems on very large sparse networks. INFORMS J. Comput. 27(1):164-177.Link, Google Scholar · Zbl 1327.90356
[68] Wang J, Cheng J (2012) Truss decomposition in massive networks. Proc. VLDB Endowment 5(9):812-823.Crossref, Google Scholar · doi:10.14778/2311906.2311909
[69] Watts DJ (1999) Networks, dynamics, and the small-world phenomenon. Amer. J. Sociol. 105(2):493-527.Crossref, Google Scholar · doi:10.1086/210318
[70] Wilson AT (2009) Applying the boundary point method to an SDP relaxation of the maximum independent set problem for a branch and bound algorithm. Master’s thesis, New Mexico Institute of Mining and Technology, Socorro, NM.Google Scholar
[71] Zuckerman D (2006) Linear degree extractors and the inapproximability of max clique and chromatic number. Proc. 38th Annual ACM Sympos. Theory Comput. (ACM, · Zbl 1301.68152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.