×

Large-scale minimum variance portfolio allocation using double regularization. (English) Zbl 1517.91198

Summary: Estimation of time-varying covariances is a crucial input in minimum variance (MV) portfolio allocations. Rolling window-based sample estimates are widely used for this purpose, but they usually suffer from two major issues when applied to a moderately large number of assets: the “curse of dimensionality” and “temporal instability”. Here, we propose a double-regularized estimator for a high dimensional covariance matrix in which we impose both a temporal and cross-sectional sparsity regularization on the sample-based estimates to simultaneously mitigate these two issues. We investigate the performance of our proposed covariance estimator for MV portfolio construction using Monte Carlo experiments and empirical examples. We find that the resulting MV portfolio strikes a good balance between risk and turnover reduction, and produces more accurate equivalent returns after transaction costs are taken into account when compared to four other MV strategies.

MSC:

91G10 Portfolio theory
62P05 Applications of statistics to actuarial sciences and financial mathematics
62H12 Estimation in multivariate analysis
Full Text: DOI

References:

[1] Anderson, T., Estimation of Covariance Matrices Which are Linear Combinations or Whose Inverses are Linear Combinations of Given Matrices (1970), University of North Carolina Press · Zbl 0265.62023
[2] Arouri, M.; Msaddek, O.; Nguyen, D.; Pukthuanthong, K., Cojumps and asset allocation in international equity markets, J. Econ. Dyn. Control, 98, 1-22 (2019) · Zbl 1411.91475
[3] Bitto, A.; Frühwirth, S., Achieving shrinkage in a time-varying parameter model framework, J. Econom., 210, 1, 75-97 (2019) · Zbl 1452.62216
[4] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1-122 (2010) · Zbl 1229.90122
[5] Brandt, M., Portfolio Choice Problems (2009), North-Holland: North-Holland Amsterdam
[6] Bu, D.; Liao, Y.; Shi, Y.; Peng, H., Dynamic expected shortfall: a spectral decomposition of tail risk across time horizons, J. Econ. Dyn. Control, 108, 103753 (2019) · Zbl 1425.91431
[7] Cai, T.; Hu, J.; Li, Y.; Zheng, X., High-dimensional minimum variance portfolio estimation based on high-frequency data, J. Econom., 214, 2, 482-494 (2020) · Zbl 1456.62242
[8] Chan, L.; Karceski, J.; Lakonishok, J., On portfolio optimization: forecasting covariances and choosing the risk model, Rev. Financ. Stud., 12, 5, 937-974 (2015)
[9] Chan, L.; Lakonishok, J.; Swaminathan, B., Industry classifications and return comovement, Financ. Anal. J., 63, 6, 56-70 (2007)
[10] DeMiguel, V.; Garlappi, L.; Uppal, R., Optimal versus naive diversification: how inefficient is the 1/n portfolio strategy?, Rev. Financ. Stud., 22, 5, 1915-1953 (2007)
[11] DeMiguel, V.; Garlappi, L.; Uppal, R., A generalized approach to portfolio optimization: improving performance by constraining portfolio norms, Manag. Sci., 55, 5, 798-812 (2009) · Zbl 1232.91617
[12] Engle, R. F.; Ledoit, O.; Wolf, M., Large dynamic covariance matrices, J. Bus. Econ. Stat., 37, 2, 363-375 (2019)
[13] Fan, J.; Fan, Y.; Lv, J., High dimensional covariance matrix estimation using a factor model, J. Econom., 147, 1, 186-197 (2008) · Zbl 1429.62185
[14] Fan, J.; Furger, A.; Xiu, D., Incorporating global industrial classification standard into portfolio allocation: a simple factor-based large covariance matrix estimator with high frequency data, J. Bus. Econ. Stat., 34, 4, 489-503 (2016)
[15] Fan, J.; Gong, W.; Zhu, Z., Generalized high-dimensional trace regression via nuclear norm regularization, J. Econom., 212, 1, 177-202 (2019) · Zbl 1452.62536
[16] Gibberd, A. J.; Nelson, J. D.B., Regularized estimation of piecewise constant gaussian graphical models: the group-fused graphical lasso, J. Comput. Graph. Stat., 26, 3, 623-634 (2017)
[17] Goto, S.; Xu, Y., Improving mean variance optimization through sparse hedging restrictions, J. Financ. Quant. Anal., 50, 6, 1415-1441 (2015)
[18] Gullen, B., Subset Optimization for Asset Allocation, Working Paper (2016), California Institute for Technology
[19] Hautsch, N.; Voigt, S., Large-scale portfolio allocation under transaction costs and model uncertainty, J. Econom., 212, 1, 221-240 (2019) · Zbl 1452.62769
[20] Huber, F.; Kastner, G.; Feldkircher, M., Should I stay or should I go? A latent threshold approach to large-scale mixture innovation models, J. Appl. Econom., 34, 5, 621-640 (2019)
[21] Huber, F.; Koop, G.; Onorante, L., Inducing sparsity and shrinkage in time-varying parameter models, J. Bus. Econ. Stat., 0, 0, 1-15 (2020)
[22] Jagannathan, R.; Ma, T., Risk reduction in large portfolios: why imposing the wrong constraints helps, J. Financ., 58, 4, 1651-1683 (2003)
[23] Kan, R.; Zhou, G., Optimal portfolio choice with parameter uncertainty, J. Financ. Quant. Anal., 42, 3, 621-656 (2007)
[24] Kastner, G., Sparse Bayesian time-varying covariance estimation in many dimensions, J. Econom., 210, 1, 98-115 (2019) · Zbl 1452.62773
[25] Kirby, C.; Ostdiek, B., It’s all in the timing: simple active portfolio strategies that outperform Naïve diversification, J. Financ. Quant. Anal., 47, 02, 437-467 (2012)
[26] Kourtis, A., A stability approach to mean-variance optimization, Financ. Rev., 50, 3, 301-330 (2015)
[27] Kourtis, A.; Dotsis, G.; Markellos, R., Parameter uncertainty in portfolio selection: shrinking the inverse covariance matrix, J. Bank. Financ., 36, 9, 2522-2613 (2012)
[28] Ledoit, O.; Wolf, M., Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, J. Empir. Financ., 10, 5, 603-621 (2003)
[29] Markowitz, H., Portfolio selection, J. Financ., 7, 1, 77-91 (1952)
[30] Michael, J.; Robert, R., On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results, Rev. Financ. Stud., 4, 2, 315-345 (1991)
[31] Michaud, R. O., The Markowitz optimization enigma: is “optimized” optimal?, Financ. Anal. J., 45, 1, 31-42 (1989)
[32] Olivares-Nadal, A.; DeMiguel, V., Technical note—a robust perspective on transaction costs in portfolio optimization, Oper. Res., 66, 3, 733-739 (2018) · Zbl 1455.91239
[33] Pakel, C.; Shephard, N.; Sheppard, K.; Engle, R., Fitting vast dimensional time-varying covariance models, J. Bus. Econ. Stat., 1-17 (2020)
[34] Plachel, L., A Unified Model for Regularized and Robust Portfolio Optimization, Essays on Robust Portfolio Management (2019), University of St.Gallen · Zbl 1425.91391
[35] Politis, D.; Romano, J., The stationary bootstrap, J. Am. Stat. Assoc., 89, 428, 1303-1313 (1994) · Zbl 0814.62023
[36] Ravikumar, P.; Wainwright, M. J.; Raskutti, G.; Yu, B., High-dimensional covariance estimation by minimizing l-penalized log-determinant divergence, Electron. J. Stat., 5, 1, 935-980 (2011) · Zbl 1274.62190
[37] Stevens, G., On the inverse of the covariance matrix in portfolio analysis, J. Financ., 53, 5, 1821-1827 (1998)
[38] Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K., Sparsity and smoothness via the fused lasso, J. R. Stat. Soc. B, 67, 1, 91-108 (2005) · Zbl 1060.62049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.