×

A topological degree counting for some Liouville systems of mean field type. (English) Zbl 1214.58008

Summary: Let \((M,g)\) be a compact Riemannian surface with volume 1. Let \(A=(a_{ij})_{n\times n}\) be an invertible matrix and \(A^{-1}=(a_{ij})_{n\times n}\) be the inverse of \(A\). In this paper, we consider the generalized Liouville system
\[ \Delta_gu_i+\sum^n_{j=1}a_{ij}\rho_j\left(\frac{h_je^{u_j}}{\int h_je^{u_j}}-1\right)=0\quad\text{in }M,\tag{1} \]
where \(0<h_j\in C^1(M)\) and \(\rho_j\in \mathbb R^+\), and prove that, under the assumptions of \((H_1)\) and \((H_2)\) (see the Introduction), the Leray-Schauder degree of (1) is equal to
\[ \frac{(-\chi(M)+1)\cdots(\chi(M)+N)}{N!} \]
if \(\rho=(\rho_1,\dots,\rho_n)\) satisfies
\[ 8\pi N\sum^n_{i=1}\rho_i<\sum_{1\leq i,j\leq n}a_{ij}\rho_i\rho_j<8\pi(N+1)\sum^n_{i=1}\rho_i. \]
Equation (1) is a natural generalization of the classic Liouville equation and is the Euler-Lagrangian equation of the nonlinear function \(\Phi_\rho\):
\[ \Phi_\rho(u)=\tfrac12\int_Ma^{ij}\nabla_gu_i\cdot\nabla_gu_j+\sum^n_{i=1}\int_M\rho_iu_i-\sum^n_{i=1}\rho_i\log\int_Mh_ie^{u_i}. \]
The Liouville system (1) has arisen in many different research areas in mathematics and physics. Our counting formulas are the first result in degree theory for Liouville systems.

MSC:

58J05 Elliptic equations on manifolds, general theory
35J60 Nonlinear elliptic equations
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
30F10 Compact Riemann surfaces and uniformization
Full Text: DOI

References:

[1] Aly, Thermodynamics of a two-dimensional self-gravitating system, Phy. Rev. E (3) 49 (5) pp 3771– (1994) · doi:10.1103/PhysRevE.49.3771
[2] Bartolucci, A compactness result for periodic multivortices in the electroweak theory, Nonlinear Anal. 53 (5) pp 277– (2003) · Zbl 1138.58308 · doi:10.1016/S0362-546X(02)00310-3
[3] Bartolucci, Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys. 229 (5) pp 3– (2002) · Zbl 1009.58011 · doi:10.1007/s002200200664
[4] Bennett, Magnetically self-focussing streams, Phys. Rev. 45 (5) pp 890– (1934) · doi:10.1103/PhysRev.45.890
[5] Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I. II, Colloq. Math. 66 (5) pp 319– (1994) · Zbl 0817.35041
[6] Caffarelli, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys. 168 (5) pp 321– (1995) · Zbl 0846.58063 · doi:10.1007/BF02101552
[7] Caglioti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (5) pp 501– (1992) · Zbl 0745.76001 · doi:10.1007/BF02099262
[8] Caglioti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II, Comm. Math. Phys. 174 (5) pp 229– (1995) · Zbl 0840.76002 · doi:10.1007/BF02099602
[9] Chanillo, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (5) pp 217– (1994) · Zbl 0821.35044 · doi:10.1007/BF02103274
[10] Chanillo, Conformally invariant systems of nonlinear PDE of Liouville type, Geom. Funct. Anal. 5 (5) pp 924– (1995) · Zbl 0858.35035 · doi:10.1007/BF01902215
[11] Chen, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (5) pp 728– (2002) · Zbl 1040.53046 · doi:10.1002/cpa.3014
[12] Chen, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (5) pp 1667– (2003) · Zbl 1032.58010 · doi:10.1002/cpa.10107
[13] Chen, Mean field equations of Liouville type with singular data: sharper estimates, Discrete Contin. Dyn. Syst. 28 (5) pp 1237– (2010)
[14] Chen, Concentration phenomena of two-vortex solutions in a Chern-Simons model, Ann. Sc. Norm. Super. Pisa Cl. Sci. 5 3 (5) pp 367– (2004) · Zbl 1170.35413
[15] Chern, Uniqueness of topological solutions and the structure of solutions for the Chern-Simons system with two Higgs particles, Comm. Math. Phys. 296 (5) pp 323– (2010) · Zbl 1192.35175 · doi:10.1007/s00220-010-1021-z
[16] Childress, Nonlinear aspects of chemotaxis, Math. Biosci. 56 pp 3– (1981) · Zbl 0481.92010 · doi:10.1016/0025-5564(81)90055-9
[17] Chipot, On the solutions of Liouville systems, J. Differential Equations 140 (5) pp 59– (1997) · Zbl 0902.35039 · doi:10.1006/jdeq.1997.3316
[18] Chipot, Erratum: ”On the solutions of Liouville systems”, J. Differential Equations 178 (5) pp 630– (2002) · doi:10.1006/jdeq.2001.4105
[19] Debye, Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Z. 24 pp 185– (1923)
[20] Dunne, Lecture Notes in Physics, M36, in: Self-dual Chern-Simons theories (1995) · Zbl 0834.58001 · doi:10.1007/978-3-540-44777-1
[21] Dziarmaga, Low energy dynamics of [U(1)]N Chern-Simons solitons, Phys. Rev. D 49 (5) pp 5469– (1994) · doi:10.1103/PhysRevD.49.5469
[22] Hong, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (5) pp 2230– (1990) · Zbl 1014.58500 · doi:10.1103/PhysRevLett.64.2230
[23] Jackiw, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (5) pp 2234– (1990) · Zbl 1050.81595 · doi:10.1103/PhysRevLett.64.2234
[24] Jost, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math. 59 (5) pp 526– (2006) · Zbl 1207.35140 · doi:10.1002/cpa.20099
[25] Keller, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol. 30 pp 235– (1971) · Zbl 1170.92308 · doi:10.1016/0022-5193(71)90051-8
[26] Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math. 46 (5) pp 27– (1993) · Zbl 0811.76002 · doi:10.1002/cpa.3160460103
[27] Kiessling, Symmetry results for finite-temperature, relativistic Thomas-Fermi equations, Comm. Math. Phys. 226 (5) pp 607– (2002) · Zbl 0992.81026 · doi:10.1007/s002200200625
[28] Kiessling, Dissipative stationary plasmas: kinetic modeling, Bennett’s pinch and generalizations, Phys. Plasmas 1 (5) pp 1841– (1994) · doi:10.1063/1.870639
[29] Kim, Schrödinger fields on the plane with [U(1)]N Chern-Simons interactions and generalized self-dual solitons, Phys. Rev. D (3) 48 (5) pp 1821– (1993) · doi:10.1103/PhysRevD.48.1821
[30] Li, Harnack type inequality: themethod ofmoving planes, Comm.Math. Phys. 200 (5) pp 421– (1999) · Zbl 0928.35057 · doi:10.1007/s002200050536
[31] Lin, Topological degree for mean field equations on S2, Duke Math. J. 104 (5) pp 501– (2000) · Zbl 0964.35038 · doi:10.1215/S0012-7094-00-10437-1
[32] Lin, Uniqueness of solutions to the mean field equations for the spherical Onsager vortex, Arch. Ration. Mech. Anal. 153 (5) pp 153– (2000) · Zbl 0968.35045 · doi:10.1007/s002050000085
[33] Lin, Profile of bubbling solutions to a Liouville system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (5) pp 117– (2010) · Zbl 1182.35107 · doi:10.1016/j.anihpc.2009.09.001
[34] Ma, Convergence for a Liouville equation, Comment. Math. Helv. 76 (5) pp 506– (2001) · Zbl 0987.35056 · doi:10.1007/PL00013216
[35] Nolasco, Vortex condensates for the SU(3) Chern-Simons theory, Comm. Math. Phys. 213 (5) pp 599– (2000) · Zbl 0998.81047 · doi:10.1007/s002200000252
[36] Rubinstein, SIAM Studies in Applied Mathematics, 11, in: Electro-diffusion of ions (1990) · doi:10.1137/1.9781611970814
[37] Spruck, Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (5) pp 75– (1995)
[38] Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math. 59 pp 251– (1992) · Zbl 0806.35134 · doi:10.1007/BF02790230
[39] Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (5) pp 355– (1992) · Zbl 0774.76069 · doi:10.1007/BF01837114
[40] Yang, Solitons in field theory and nonlinear analysis (2001) · Zbl 0982.35003 · doi:10.1007/978-1-4757-6548-9
[41] Zhang, Blowup solutions of some nonlinear elliptic equations involving exponential nonlinearities, Comm. Math. Phys. 268 (5) pp 105– (2006) · Zbl 1151.35030 · doi:10.1007/s00220-006-0092-3
[42] Zhang, Asymptotic behavior of blowup solutions for elliptic equations with exponential nonlinearity and singular data, Commun. Contemp. Math. 11 (5) pp 395– (2009) · Zbl 1179.35137 · doi:10.1142/S0219199709003417
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.