×

Stability and instability of some nonlinear dispersive solitary waves in higher dimension. (English) Zbl 0861.35094

This extensive paper is concerned with stability properties of radially symmetric solitary waves solutions for nonlinear evolution equations \[ \partial_t u+\Delta\partial_{x_1}u+ \partial_{x_1}(f(u))=0,\quad x=(x_1,x')\in\mathbb{R}^n=\mathbb{R}\times\mathbb{R}^{n-1},\tag{1} \] and \[ \partial_tu-\Delta\partial_tu+(f(u))_{x_1}=0,\quad x=(x_1,x_2)\in\mathbb{R}^2.\tag{2} \] Suppose \(n\) is 2 or 3, \(f\in C^{s+1}(\mathbb{R}^n)\), \(s>1+2^{-1}n\), \(f(0)=f'(0)=0\), \(f(s)=O(|s|^{p+1})\) as \(|s|\to+\infty\), and \(0<p<4(n-2)^{-1}\). The author considers a smooth function in (1) of the form \(u(x,t)=\varphi_c(x_1-ct,x')\), \(c>0\). Then, if \(\varphi_c\) and \(\Delta\varphi_c\) decrease to \(0\) at infinity, we have \[ -c\varphi_c+ \Delta\varphi_c+f(\varphi_c)=0.\tag{3} \] Under the assumption above, the equation (3) possesses a positive, radially symmetric solution \(\varphi_c\in H^1(\mathbb{R}^n)\). The function \(\varphi_c\) is called stable if for all \(\varepsilon>0\), there is \(\delta>0\) such that, if \(u_0\in U_\delta\) and \(u(.,t)\) is a solution of (1), with \(u(.,0)=u_0\), then \(u(.,t)\in U_\varepsilon\) for all \(t>0\), where \(U_\varepsilon\) is the set of \(u\in H^1(\mathbb{R}^n)\) such that \(\inf_{\alpha\in\mathbb{R}^n}|u-\varphi_c(.,-\alpha)|_1<\varepsilon\).
The main result of this paper states that if the curve \(c\mapsto\varphi_c\) is \(C^1\) with values in \(H^2(\mathbb{R}^n)\), there exist \(C>0\), \(\delta_1>0\) such that \(|{d\varphi_c\over dx} (x)|\leq Ce^{-\delta_1|x|}\), \(x\in\mathbb{R}^n\), and the null space of the linearized operator \(L_c=-\Delta+c-f'(\varphi_c)\) is spanned by \(\{\partial_{x_j}\varphi_c; 1\leq j\leq n\}\), then \(\varphi_c\) is stable if and only if \(d''(c)>0\), where \(d(c)= E(\varphi_c)+cQ(\varphi_c)\) and \(E(\varphi_c)= 2^{-1}\int_{\mathbb{R}^n}|\nabla \varphi_c|^2dx- \int_{\mathbb{R}^n} F(\varphi_c)dx\) with \(F'=f\), \(F(0)=0\) and \(Q(\varphi_c)= 2^{-1}\int_{\mathbb{R}^n} \varphi^2_c dx\). Moreover, if we define the stability of \(\varphi_c\) for equation (2) in the same way as we did above for the equation (1), then the same result as for (1) holds for the equation (2).
Reviewer: D.M.Bors (Iaşi)

MSC:

35Q51 Soliton equations
35B35 Stability in context of PDEs
35Q30 Navier-Stokes equations
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI

References:

[1] DOI: 10.1098/rspa.1987.0073 · Zbl 0648.76005 · doi:10.1098/rspa.1987.0073
[2] DOI: 10.1007/BF02430641 · Zbl 0809.35095 · doi:10.1007/BF02430641
[3] Berestycki, Arch. Rational Mech. Anal. 82 pp 313– (1983)
[4] Berestycki, C. R. Acad. Sci. Paris Ser. I 297 pp 307– (1983)
[5] Zahkarov, Sov. Phys. JETP 39 pp 285– (1974)
[6] DOI: 10.1002/cpa.3160390103 · Zbl 0594.35005 · doi:10.1002/cpa.3160390103
[7] DOI: 10.1137/0516034 · Zbl 0583.35028 · doi:10.1137/0516034
[8] DOI: 10.1007/BF01208265 · Zbl 0527.35023 · doi:10.1007/BF01208265
[9] Souganidis, Proc. Roy. Soc. Edinburgh Sect. A 114 pp 195– (1990) · Zbl 0713.35108 · doi:10.1017/S0308210500024380
[10] DOI: 10.1016/0167-2789(89)90238-8 · Zbl 0664.76036 · doi:10.1016/0167-2789(89)90238-8
[11] DOI: 10.1007/BF00251502 · Zbl 0676.35032 · doi:10.1007/BF00251502
[12] DOI: 10.1016/0167-2789(90)90138-F · Zbl 0714.35076 · doi:10.1016/0167-2789(90)90138-F
[13] DOI: 10.1007/BFb0067080 · doi:10.1007/BFb0067080
[14] DOI: 10.1016/0022-1236(87)90044-9 · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[15] Fedoriouk, Methodes asymptotiques pour les equations differentielles ordinaires lineaires (1987)
[16] Coffman, Arch. Rational Mech. Anal. 30 pp 141– (1981)
[17] DOI: 10.1080/03605309208820902 · Zbl 0796.35142 · doi:10.1080/03605309208820902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.