×

Existence and stability of nonequilibrium steady states of Nernst-Planck-Navier-Stokes systems. (English) Zbl 07631009

Summary: We consider the Nernst-Planck-Navier-Stokes system in a bounded domain of \(\mathbb{R}^d\), \(d = 2 , 3\) with general nonequilibrium Dirichlet boundary conditions for the ionic concentrations. We prove the existence of smooth steady state solutions and present a sufficient condition in terms of only the boundary data that guarantees that these solutions have nonzero fluid velocity. We show that all time dependent solutions of the Nernst-Planck-Stokes system in three spatial dimensions, after a finite transient time, become bounded uniformly, independently of their initial size. In addition, we consider one dimensional steady states with steady nonzero currents and show that they are globally nonlinearly stable as solutions in a three dimensional periodic strip, if the currents are sufficiently weak.

MSC:

82-XX Statistical mechanics, structure of matter
35-XX Partial differential equations

References:

[1] Probstein, R., Physicochemical Hydrodynamics: An Introduction (2003), Wiley-Interscience
[2] Rubinstein, I., Electro-Diffusion of Ions, SIAM Studies in Applied Mathematics (1990), SIAM: SIAM Philadelphia · Zbl 0718.00001
[3] Constantin, P.; Ignatova, M., On the Nernst-Planck-Navier-Stokes system, Arch. Ration. Mech. Anal., 232, 3, 1379-1428 (2018) · Zbl 1472.82037
[4] Bothe, D.; Fischer, A.; Saal, J., Global well-posedness and stability of electrokinetic flows, SIAM J. Math. Anal, 46, 2, 1263-1316 (2014) · Zbl 1354.76064
[5] Constantin, P.; Ignatova, M.; Lee, F.-N., Nernst-Planck-Navier-Stokes systems near equilibrium, Pure Appl. Function. Anal., 7, 1, 175-196 (2022) · Zbl 1483.35149
[6] Ryham, R., Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics (2009), arXiv:0910.4973v1
[7] Davidson, S. M.; Wissling, M.; Mani, A., On the dynamical regimes of pattern-accelerated electroconvection, Sci. Rep., 6, 22505 (2016)
[8] Kang, S.; Kawk, R., Pattern formation of three-dimensional electroconvection on a charge selective surface, Phys. Rev. Lett., 124, Article 154502 pp. (2020)
[9] Pham, V. S.; Li, Z.; Lim, K. M.; White, J. K.; Han, J., Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane, Phys. Rev. E, 86, Article 046310 pp. (2012)
[10] Rubinstein, S. M.; Manukyan, G.; Staicu, A.; Rubinstein, I.; Zaltzman, B.; Lammertink, R. G.H.; Mugele, F.; Wessling, M., Direct observation of a nonequilibrium electro-osmotic instability, Phys. Rev. Lett., 101, Article 236101-236105 (2008)
[11] Rubinstein, I.; Segel, L. A., Breakdown of a stationary solution to the Nernst-Planck-Poisson equations, J. Chem. Soc. Faraday Trans., 2, 75, 936-940 (1979)
[12] Rubinstein, I.; Zaltzman, B., Electro-osmotically induced convection at a permselective membrane, Phys. Rev. E, 62, 2238-2251 (2000)
[13] Zaltzman, B.; Rubinstein, I., Electro-osmotic slip and electroconvective instability, J. Fluid Mech., 579, 173-226 (2007) · Zbl 1175.76168
[14] Mock, M., Analysis of Mathematical Models of Semiconductor Devices (1983), Boole Press: Boole Press Dublin · Zbl 0532.65081
[15] Park, J.-H.; Jerome, J. W., Qualitative properties of steady state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math., 57, 3, 609-630 (1997) · Zbl 0874.34017
[16] Constantin, P.; Ignatova, M.; Lee, F.-N., Nernst-Planck-Navier-Stokes systems far from equilibrium, Arch Ration. Mech. Anal., 240, 1147-1168 (2021) · Zbl 1471.35230
[17] Schmuck, M., Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl., 19, 993-1014 (2009) · Zbl 1229.35215
[18] Fischer, A.; Saal, J., Global weak solutions in three space dimensions for electrokinetic flow processes, J. Evol. Equ., 17, 309-333 (2017) · Zbl 1396.35048
[19] Lee, F.-N., Global regularity for Nernst-Planck-Navier-Stokes systems (2021), arXiv:2106.01569
[20] Liu, J.-G.; Wang, J., Global existence for Nernst-Planck-Navier-Stokes system in \(\mathbb{R}^n\), Commun. Math. Sci., 18, 1743-1754 (2020) · Zbl 1464.35186
[21] Biler, P., The Debye system: existence and large time behavior of solutions, Nonlinear Anal., 23, 9, 1189-1209 (1994) · Zbl 0814.35054
[22] Biler, P.; Dolbeault, J., Long time behavior of solutions to Nernst-Planck and Debye-Hckel drift-diffusion systems, Ann. Henri Poincaré, 1, 461-472 (2000) · Zbl 0976.82046
[23] Choi, Y. S.; Lui, R., Multi-dimensional electrochemistry model, Arch. Ration. Mech. Anal., 130, 315-342 (1995) · Zbl 0832.35013
[24] Gajewski, H.; Groger, K., On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl., 113, 12-35 (1986) · Zbl 0642.35038
[25] Gajewski, H.; Groger, K., Reaction-diffusion processes of electrically charged species, Math. Nachr., 177, 109-130 (1996) · Zbl 0851.35061
[26] Constantin, P.; Foias, C., Navier-Stokes Equations (1988), The University of Chicago Press: The University of Chicago Press Chicago · Zbl 0687.35071
[27] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (1984), AMS Chelsea Publishing · Zbl 0568.35002
[28] Constantin, P.; Ignatova, M.; Lee, F.-N., Interior electroneutrality in Nernst-Planck-Navier-Stokes systems, Arch. Ration. Mech. Anal., 242, 1091-1118 (2021) · Zbl 1484.35318
[29] Gajewski, H., On uniqueness and stability of steady state carrier distributions in semiconductors, (Vosmanský, J.; Zlámal, M., Equadiff 6. Lecture Notes in Mathematics, Vol. 1192 (1986), Springer: Springer Berlin, Heidelberg) · Zbl 0609.35024
[30] Rabinowitz, P. H., Existence and nonuniqueness of rectangular solutions of the Benard problem, Arch. Ration. Mech. Anal., 29, 32-57 (1968) · Zbl 0164.28704
[31] Yudovich, I., Periodic motions of a viscous incompressible fluid, Dokl. Akad. Nauk SSSR, 130, 1214-1217 (1960), (in Russian) · Zbl 0158.23504
[32] Evans, L. C., Partial Differential Equations (1998), American Mathematical Society: American Mathematical Society Providence, R.I. · Zbl 0902.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.