×

Isotropic polynomial invariants of Hall tensor. (English) Zbl 1416.15020

Summary: The Hall tensor emerges from the study of the Hall effect, an important magnetic effect observed in electric conductors and semiconductors. The Hall tensor is third-order and three-dimensional, whose first two indices are skew-symmetric. This paper investigates the isotropic polynomial invariants of the Hall tensor by connecting it with a second-order tensor via the third-order Levi-Civita tensor. A minimal isotropic integrity basis with 10 invariants for the Hall tensor is proposed. Furthermore, it is proved that this minimal integrity basis is also an irreducible isotropic function basis of the Hall tensor.

MSC:

15A69 Multilinear algebra, tensor calculus
15A72 Vector and tensor algebra, theory of invariants

References:

[1] BOEHLER, J. P. On irreducible representations for isotropic scalar functions. Journal of Applied Mathematics and Mechanics, 57(6), 323-327 (1977) · Zbl 0362.15019
[2] BOEHLER, J. P., KIRILLOV, A. A., and ONAT, E. T. On the polynomial invariants of the elasticity tensor. Journal of Elasticity, 34(2), 97-110 (1994) · Zbl 0808.73007 · doi:10.1007/BF00041187
[3] PENNISI, S. and TROVATO, M. On the irreducibility of Professor G. F. Smith’s representations for isotropic functions. International Journal of Engineering Science, 25(8), 1059-1065 (1987) · Zbl 0614.73002 · doi:10.1016/0020-7225(87)90097-8
[4] SMITH, G. F. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science, 9(10), 899-916 (1971) · Zbl 0233.15021 · doi:10.1016/0020-7225(71)90023-1
[5] SMITH, G. F. and BAO, G. Isotropic invariants of traceless symmetric tensors of orders three and four. International Journal of Engineering Science, 35(15), 1457-1462 (1997) · Zbl 0907.15019 · doi:10.1016/S0020-7225(97)00048-7
[6] SPENCER, A. J. M. A note on the decomposition of tensors into traceless symmetric tensors. International Journal of Engineering Science, 8(6), 475-481 (1970) · Zbl 0205.05103 · doi:10.1016/0020-7225(70)90024-8
[7] WANG, C. C. A new representation theorem for isotropic functions: an answer to Professor G. F. Smith’s criticism of my papers on representations for isotropic functions. Archive for Rational Mechanics and Analysis, 36(3), 166-197 (1970) · Zbl 0327.15030 · doi:10.1007/BF00272241
[8] ZHENG, Q. S. On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. International Journal of Engineering Science, 31(7), 1013-1024 (1993) · Zbl 0781.15011 · doi:10.1016/0020-7225(93)90109-8
[9] ZHENG, Q. S. Theory of representations for tensor functions—-a unified invariant approach to constitutive equations. Applied Mechanics Reviews, 47(11), 545-587 (1994) · Zbl 0999.74501 · doi:10.1115/1.3111066
[10] ZHENG, Q. S. Two-dimensional tensor function representations involving third-order tensors. Archives of Mechanics, 48(4), 659-673 (1996) · Zbl 0864.73004
[11] ZHENG, Q. S. and BETTEN, J. On the tensor function representations of 2nd-order and 4th-order tensors, part I. Journal of Applied Mathematics and Mechanics, 75(4), 269-281 (1995) · Zbl 0832.73003
[12] CHEN, Y., QI, L., and ZOU, W. Irreducible function bases of isotropic invariants of third and fourth order symmetric tensors. arXiv:1712.02087v3, Preprint (2018)
[13] CHEN, Z., LIU, J., QI, L., ZHENG, Q. S., and ZOU, W. An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor. Journal of Mathematical Physics, 59, 081703 (2018) · Zbl 1467.74009 · doi:10.1063/1.5028307
[14] AUFFRAY, N. and ROPARS, P. Invariant-based reconstruction of bidimensional elasticity tensors. International Journal of Solids and Structures, 87, 183-193 (2016) · doi:10.1016/j.ijsolstr.2016.02.013
[15] HILBERT, D. Theory of Algebraic Invariants, Cambridge University Press, Cambridge (1993) · Zbl 0801.13001
[16] OLIVE, M. and AUFFRAY, N. Isotropic invariants of a completely symmetric third-order tensor. Journal of Mathematical Physics, 55(9), 092901 (2014) · Zbl 1366.53008 · doi:10.1063/1.4895466
[17] STURMFELS, B. Algorithms in Invariant Theory, Springer Science & Business Media, Vienna (2008) · Zbl 1154.13003
[18] OLIVE, M., KOLEV, B., and AUFFRAY, N. A minimal integrity basis for the elasticity tensor. Archive for Rational Mechanics and Analysis, 226(1), 1-31 (2017) · Zbl 1372.74013 · doi:10.1007/s00205-017-1127-y
[19] HAUSSÜHL, S. Physical Properties of Crystals: An Introduction, John Wiley & Sons, New Jersey, 205-207 (2008)
[20] HALL, E. On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3), 287-292 (1879) · JFM 11.0767.01 · doi:10.2307/2369245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.