×

A two-scale model for subcritical damage propagation. (English) Zbl 1183.74229

Summary: The failure behaviour of quasi-brittle materials is often time-dependent. This dependence is due to physical processes taking place at the level of the micro-structure. For a rigorous modeling of the time-dependent behaviour of that kind of solids, a two-scale approach is well suited. This paper investigates time-dependent damage which microscopic origin is the subcritical micro-crack growth. We present a two-scale time-dependent damage model completely deduced from small-scale descriptions of subcritical micro-crack propagation, without any macroscopic assumptions. The passage from the micro-scale to the macro-scale is done through an asymptotic homogenization approach. At the micro-scale, the tensile failure due to the subcritical propagation of cracks is the dominant mechanism of creep observed at the macro-scale. We consider microstructures with cracks evolving in different subcritical regimes. We assume a complex propagation law that considers three characteristic regimes of subcritical crack growth, corresponding to different physical processes at the crack tip level. Numerical simulations of constant strain rate, relaxation and creep tests illustrate the ability of the developed model to reproduce different regimes of time-dependent damage response.

MSC:

74R05 Brittle damage

Software:

FEAP
Full Text: DOI

References:

[1] Guery, A. Abou-Chakra; Cormery, F.; Shao, J. F.; Kondo, D.: A multiscale modeling of damage and time-dependent behavior of cohesive rocks, Int. J. Numer. anal. Meth. geomech. 33, 567-589 (2009) · Zbl 1273.74234
[2] Anderson, O.; Grew, P.: Stress corrosion theory of crack propagation with applications to geophysics, Rev. geophys. Space phys. 15, 77-104 (1977)
[3] Atkinson, B.; Meredith, P.: The theory of subcritical crack growth with applications to minerals and rocks, (1987)
[4] Benssousan, A.; Lions, J.; Papanicolaou, G.: Asymptotic analysis for periodic structures, (1978) · Zbl 0404.35001
[5] Betten, J.: Creep mechanics, (2002) · Zbl 0502.73036
[6] Challamel, N.; Lanos, C.; Casandjian, C.: Creep damage modelling for quasi-brittle materials, Eur. J. Mech. A/solids 24, 593-613 (2005) · Zbl 1074.74050 · doi:10.1016/j.euromechsol.2005.05.003
[7] Charles, R.: Dynamic fatigue of Glass, J. appl. Phys. 29, 1657-1662 (1958)
[8] Cristescu, N.; Hunsche, U.: Time-effects in rock mechanics, (1998)
[9] Dartois, S., Nadot-Martin, C., Halm, D., Dragon, A., Fanget, A., 2009. Discrete damage modelling of highly-filled composites via a direct multiscale morphological approach, J. Multisc. Model. 1.
[10] Dascalu, C.: A two-scale damage model with material length, CR mecanique 337, 645-652 (2009)
[11] Dascalu, C.; Bilbie, G.: A multiscale approach to damage configurational forces, Int. J. Fract. 147, 285-293 (2007) · Zbl 1141.74009 · doi:10.1007/s10704-008-9189-3
[12] Dascalu, C.; Bilbie, G.; Agiasofitou, E.: Damage and size effect in elastic solids: a homogenization approach, Int. J. Solid struct. 45, 409-430 (2008) · Zbl 1167.74539 · doi:10.1016/j.ijsolstr.2007.08.025
[13] François, B., Dascalu, C., submitted for publication. A two-scale time-dependent damage model based on non-planar growth of micro-cracks. · Zbl 1225.74071 · doi:10.1016/j.jmps.2010.07.018
[14] Freiman, S.: Effects of chemical environments on slow crack growth in glasses and ceramics, J. geophys. Res. 89, 4072-7076 (1984)
[15] Freund, L. B.: Dynamic fracture mechanics, (1998) · Zbl 0712.73072
[16] Leguillon, D.; Sanchez-Palencia, E.: On the behavior of a cracked elastic body with (or without) friction, J. mech. Theor. appl. 1, 195-209 (1982) · Zbl 0525.73113
[17] Lemaitre, J.; Desmorat, R.: Engineering damage mechanics: ductile, creep, fatigue and brittle failures, (2005)
[18] Main, I.: A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences, Geophys. J. Int. 142, 151-161 (2000)
[19] Meredith, P.; Atkinson, B.: Fracture toughness and subcritical crack growth during high-temperature tensile deformation of westerly granite and black gabbro, Tectonophysics 39, 33-51 (1985)
[20] Miura, K.; Okui, Y.; Horii, H.: Micromechanics-based prediction of creep failure of hardrock for long-term safety of high-level radioactive waste disposal system, Mech. mater. 35, 587-601 (2003)
[21] Munt, D.; Fett, T.: Ceramics: mechanical properties, failure behavior, materials selection, (2001)
[22] Nadot, C.; Dragon, A.; Trumel, H.; Fanget, A.: Damage modelling framework for viscoelastic particulate composites via a scale transition approach, J. theor. Appl. mech. 44, 553-583 (2006)
[23] Nara, Y.; Kaneko, K.: Sub-critical crack growth in anisotropic rock, Int. J. Rock mech. MIN sci. 43, 437-453 (2006)
[24] Okui, Y.; Horii, H.: Stress and time-dependent failure of brittle rocks under compression: a theoretical prediction, J. geophys. Res. 102, No. B7, 14869-14881 (1997)
[25] Pietruszczak, S.; Lydzba, D.; Shao, J. F.: Description of creep in inherently anisotropic frictional materials, J. eng. Mech. 6, 681-690 (2004)
[26] Ruckert, C. O. F.T.; Tarpani, J. R.; Filho, W. W. Bose; Spinelli, D.: On the relation between micro- and macroscopic fatigue crack growth rates in aluminum alloy AMS 7475-T7351, Int. J. Fract. 142, 233-240 (2006)
[27] Salganik, R.; Rapoport, L.; Gotlib, V.: Effect of structure on environmentally assisted subcritical crack growth in brittle materials, Int. J. Fract. 87, 21-46 (1997)
[28] Sanchez-Palencia, E.: Non-homogeneous media and vibration theory, Lecture notes in physics 127 (1980) · Zbl 0432.70002
[29] Scholz, C. H.: Static fatigue of quartz, J. geophys. Res. 77, 2104-2114 (1972)
[30] Taylor, R., 2008. FEAP – A Finite Element Analysis Program – Version 8.2 – User Manual.
[31] Wiederhorn, S.; Bolz, L.: Stress corrosion and static fatigue of Glass, J. am. Ceram. soc. 53, 543-548 (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.