×

Invariant measures of the lack of symmetry with respect to the symmetry groups of 2D elasticity tensors. (English) Zbl 1263.74007

Summary: We study the geometric structure of the 2D elasticity tensor space using the representation theory of linear groups. We use Kelvin’s notation system in which \(\mathbb{O}(2)\) acts on the 2D stress tensors as subgroup of \(\mathbb{O}(3)\). We present the method in the simple case of the stress tensors and we recover Mohr’s circle construction. Next, we apply it to the elasticity tensors. We explicitly provide a linear frame of the elastic tensor space in which the representation of the rotation group is decomposed into irreductible subspaces. Thanks to five independent invariants chosen among six, an elasticity tensor in 2D can be represented by a closed line or, in degenerated cases, by a circle or a point. The elasticity tensor space, parameterized with these invariants, consists in the union of a manifold of dimension 5, two volumes and a surface. The complete description requires five polynomial invariants, two linear, two quadratic and one cubic. We reveal the physical and geometrical meaning of these invariants and we propose a simple method to determine the elastic behaviour of an anisotropic material of which the symmetry is not known a priori, thanks to invariant measures of the lack of symmetry with respect to class of materials.

MSC:

74B05 Classical linear elasticity
74E10 Anisotropy in solid mechanics
15A72 Vector and tensor algebra, theory of invariants
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: DOI

References:

[1] Ahmad, F.: Invariants and structural invariants of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 55(4), 597–606 (2002) · Zbl 1068.74006 · doi:10.1093/qjmam/55.4.597
[2] Auffray, N., Bouchet, R., Bréchet, Y.: Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. Int. J. Solids Struct. 46, 440–454 (2009) · Zbl 1168.74319 · doi:10.1016/j.ijsolstr.2008.09.009
[3] Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8, 633–671 (1970) · doi:10.1029/RG008i003p00633
[4] Betten, J.: Integrity basis for a second-order and a fourth-order tensor. Int. J. Math. Math. Sci. 5(1), 87–96 (1982) · Zbl 0493.53011 · doi:10.1155/S0161171282000088
[5] Boehler, J.-P., Kirillov, A.A., Onat, E.T.: On the polynomial invariants of the elastic tensor. J. Elast. 34, 97–110 (1994) · Zbl 0808.73007 · doi:10.1007/BF00041187
[6] Bóna, A., Bucataru, I., Slawinski, M.A.: Space of SO(3)-orbits of elastic tensors. Arch. Mech. 60(3), 123–138 (2008) · Zbl 1162.74322
[7] Bucataru, I., Slawinski, M.A.: Invariant properties for finding distance in space of elasticity tensors. J. Elast. 94, 97–114 (2009) · Zbl 1160.74310 · doi:10.1007/s10659-008-9186-9
[8] Chadwick, P., Vianello, M., Cowin, S.C.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471–2492 (2001) · Zbl 1017.74009 · doi:10.1016/S0022-5096(01)00064-3
[9] Cowin, S.C.: Properties of the anisotropic elasticity tensors. Q. J. Mech. Appl. Math. 42, 249–266 (1989) · Zbl 0682.73011 · doi:10.1093/qjmam/42.2.249
[10] Cowin, S.C., Mehrabadi, M.: On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math. 40, 451–476 (1987) · Zbl 0625.73014 · doi:10.1093/qjmam/40.4.451
[11] Cowin, S.C., Yang, G.: Properties of the anisotropic elasticity tensors. J. Elast. 46, 151–180 (1997) · Zbl 0902.73006 · doi:10.1023/A:1007335407097
[12] Culmann, K.: Die Graphische Statik. Verlag Von Meyer & Zeller, Zurich (1866) · JFM 07.0546.01
[13] Dieudonné, J.: Eléments d’Analyse, Tome III. Gauthier-Villars, Paris (1970) · Zbl 0208.31802
[14] Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43, 81–108 (1996) · Zbl 0876.73008 · doi:10.1007/BF00042505
[15] François, M., Geymonat, G., Berthaud, Y.: Determination of the symmetries of an experimentally determined stiffness tensor; application to acoustic measurements. Int. J. Solids Struct. 35, 31–32 (1998) · Zbl 0921.73013
[16] He, Q.-C., Curnier, A.: A more fundamental approach to damaged elastic stress-strain relations. Int. J. Solids Struct. 32(10), 1433–1457 (1995) · Zbl 0881.73105 · doi:10.1016/0020-7683(94)00183-W
[17] Hilbert, D.: Über die theorie der algebraischen formen. Math. Ann. 36, 473–534 (1890) · JFM 22.0133.01 · doi:10.1007/BF01208503
[18] Hilbert, D.: Über die vollen invariantensysteme. Math. Ann. 42, 313–373 (1893) · JFM 25.0173.01 · doi:10.1007/BF01444162
[19] Mehrabadi, M., Cowin, S.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 4, 109–124 (1990) · Zbl 0698.73002
[20] Mehrabadi, M., Cowin, S., Jaric, J.: Six-dimensional orthogonal tensor representation of the rotation about an axis in three dimensions. Int. J. Solids Struct. 32(3–4), 439–449 (1995) · Zbl 0865.73006 · doi:10.1016/0020-7683(94)00112-A
[21] Mohr, O.: Über die Darstellung des spannunggszustandes und des Deformationszustandes eines Körperelementes und über die Andwendung derselben in der Festigkeitslehre. Civilingenieur 28, 112–158 (1900)
[22] Mohr, O.: Welche umstände bedingen die elastizitätgrenze und den bruch eines materials? Z. Ver. Dtsch. Ing. 44, 1524–1530 (1900) · JFM 31.0771.01
[23] Mohr, O.: Abhandlungen aus dem Gebiete der Technischen Mechanik, 2nd edn. Berlin (1914) · JFM 45.1050.03
[24] Olver, P.E.: Canonical elastic moduli. J. Elast. 19, 189–212 (1998) · Zbl 0658.73014 · doi:10.1007/BF00045616
[25] Onat, E.T.: Effective properties of elastic materials that contain penny shaped voids. Int. J. Eng. Sci. 22, 1013–1021 (1984) · Zbl 0564.73089 · doi:10.1016/0020-7225(84)90102-2
[26] Ostrasablin, N.I.: On invariants of the fourth-rank tensor of elastic moduli. Sib. Zh. Ind. 1(1), 155–163 (1998)
[27] Ostrasablin, N.I.: Affine transformations of the equations of the linear theory of elasticity. J. Appl. Mech. Tech. Phys. 47(4), 564–572 (2006) · Zbl 1119.74004 · doi:10.1007/s10808-006-0090-4
[28] Pratz, J.: Décomposition canonique des tenseurs de rang 4 de l’é1asticité. J. Méc. Théor. Appl. 2, 893–913 (1983) · Zbl 0537.73009
[29] Rychlewski, J.: On Hooke’s law. Prikl. Mat. Meh. 48(3), 303–314 (1984) · Zbl 0581.73015
[30] Rychlewski, J.: Unconventional approach to linear elasticity. Arch. Mech. 47(2), 149–171 (1995) · Zbl 0836.73010
[31] Spencer, A.J.M.: A note on the decomposition of tensors into traceless symmetric tensors. Int. J. Eng. Sci. 8, 475–481 (1970) · Zbl 0205.05103 · doi:10.1016/0020-7225(70)90024-8
[32] Sternberg, S.: Group Theory and Physics. Cambridge University Press, Cambridge (1994) · Zbl 0816.53002
[33] Thomson, W. (Lord Kelvin): Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. Lond. 156, 481–498 (1856) · doi:10.1098/rstl.1856.0022
[34] Thomson, W. (Lord Kelvin): Mathematical and Physical Papers. Elasticity, Heat, Electromagnetism, vol. 3. Cambridge University Press, Cambridge (1890). · JFM 22.1141.01
[35] Ting, T.C.T.: Invariants of anisotropic elastic constants. Q. J. Mech. Appl. Math. 40(3), 431–448 (1987) · Zbl 0626.73009 · doi:10.1093/qjmam/40.3.431
[36] Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40, 437–454 (2005) · Zbl 1106.74016 · doi:10.1007/s11012-005-2132-z
[37] Vannucci, P., Verchery, G.: Stiffness design of laminates using the polar method. Int. J. Solids Struct. 38, 9281–9294 (2001) · Zbl 1016.74019 · doi:10.1016/S0020-7683(01)00177-9
[38] Vannucci, P., Verchery, G.: Anisotropy of plane complex elastic bodies. Int. J. Solids Struct. 47, 1154–1166 (2010) · Zbl 1193.74021 · doi:10.1016/j.ijsolstr.2010.01.002
[39] Verchery, G.: Les Invariants des Tenseurs D’ordre 4 du Type de L’élasticité pp. 93–104. Editions du CNRS, Paris (1982) · Zbl 0516.73015
[40] Vincenti, A., Vannucci, P., Verchery, G.: Influence of orientation errors on quasi-homogeneity of composite laminates. Compos. Sci. Technol. 63, 739–749 (2003) · doi:10.1016/S0266-3538(02)00263-4
[41] Voigt, W.: Lehrbuch der Kristallphysics. Teubner, Leipzig (1910)
[42] Walpole, L.J.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. Lond. A 391, 149–179 (1984) · Zbl 0521.73005 · doi:10.1098/rspa.1984.0008
[43] Yang, G., Kabel, J., van Rietbergen, B., Odgaard, A., Huiskes, R., Cowin, S.C.: The anisotropic Hooke’s law for cancellous bone and wood. J. Elast. 53, 125–146 (1999) · Zbl 0971.74021 · doi:10.1023/A:1007575322693
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.