×

Infill asymptotics for adaptive kernel estimators of spatial intensity. (English) Zbl 1521.62185

Summary: We apply the Abramson principle to define adaptive kernel estimators for the intensity function of a spatial point process. We derive asymptotic expansions for the bias and variance under the regime that \(n\) independent copies of a simple point process in Euclidean space are superposed. The method is illustrated by means of a simple example and applied to tornado data.
© 2021 John Wiley & Sons Australia, Ltd

MSC:

62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62G07 Density estimation
Full Text: DOI

References:

[1] Abramson, I.A. (1982). On bandwidth variation in kernel estimates - A square root law. Annals of Statistics10, 1217-1223. · Zbl 0507.62040
[2] Baddeley, A., Rubak, E. & Turner, R.(2016). Spatial Point Patterns: Methodology and Applications with R. Boca Raton: CRC Press. · Zbl 1357.62001
[3] Berman, M. & Diggle, P. (1989). Estimating weighted integrals of the second‐order intensity of a spatial point process. Journal of the Royal Statistical Society, series B51, 81-92. · Zbl 0671.62043
[4] Bowman, A.W. & Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. The Kernel Approach with S‐Plus Illustrations. Oxford: University Press. · Zbl 0889.62027
[5] Bowman, A.W. & Foster, P.J. (1993). Adaptive smoothing and density‐based tests of multivariate normality. Journal of the American Statistical Association88, 529-537. · Zbl 0775.62086
[6] Brooks, M.M. & Marron, J.S. (1991). Asymptotic optimality of the least‐squares cross‐validation bandwidth for kernel estimates of intensity functions. Stochastic Processes and their Applications38, 157-165. · Zbl 0724.62084
[7] Chacón, J.E. & Duong, T. (2018). Multivariate Kernel Smoothing and its Applications. Boca Raton: CRC Press. · Zbl 1402.62003
[8] Chiu, S.N., Stoyan, D., Kendall, W.S. & Mecke, J. (2013). Stochastic Geometry and its Applications, 3rd edn. Chichester: Wiley. · Zbl 1291.60005
[9] Coles, P. & Jones, B. (1991). A lognormal model for the cosmological mass distribution. Monthly Notices of the Royal Astronomical Society248, 1-13.
[10] Cronie, O. & van Lieshout, M.N.M. (2018). A non‐model based approach to bandwidth selection for kernel estimators of spatial intensity functions. Biometrika105, 455-462. · Zbl 07072424
[11] Davies, T.M. & Baddeley, A. (2018). Fast computation of spatially adaptive kernel estimates. Statistics and Computing28, 937-956. · Zbl 1384.62175
[12] Davies, T.M., Flynn, C.R. & Hazelton, M.L. (2018). On the utility of asymptotic bandwidth selectors for spatially adaptive kernel density estimation. Statistics and Probability Letters138, 75-81. · Zbl 1463.62043
[13] Diggle, P.J. (1985). A kernel method for smoothing point process data. Journal of Applied Statistics34, 138-147. · Zbl 0584.62140
[14] Duong, T. (2015). Spherically symmetric multivariate Beta family kernels. Statistics and Probability Letters104, 141-145. · Zbl 1396.62100
[15] EngelJ., Herrmann, E. & Gasser, T. (1994). An iterative bandwidth selector for kernel estimation of densities and their derivatives. Journal of Nonparametric Statistics4, 21-34. · Zbl 1380.62146
[16] Hall, P., Hu, T.C. & Marron, J.S. (1995). Improved variable window kernel estimates of probability densities. Annals of Statistics23, 1-10. · Zbl 0822.62026
[17] Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D.. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. Chichester: Wiley. · Zbl 1197.62135
[18] van Lieshout, M.N.M. (2012). On estimation of the intensity function of a point process. Methodology and Computing in Applied Probability14, 567-578. · Zbl 1274.60157
[19] van Lieshout, M.N.M. (2019). Theory of Spatial Statistics: A Concise Introduction. Boca Raton: CRC Press. · Zbl 1462.62003
[20] van Lieshout, M.N.M. (2020). Infill asymptotics and bandwidth selection for kernel estimators of spatial intensity functions. Methodology and Computing in Applied Probability22, 995-1008. · Zbl 1460.60042
[21] Lo, P.H. (2017). An Iterative Plug‐in Algorithm for Optimal Bandwidth Selection in Kernel Intensity Estimation for Spatial Data. Technical University of Kaiserslautern: PhD Thesis.
[22] Loader, C. (1999). Local Regression and Likelihood. New York: Springer. · Zbl 0929.62046
[23] M⊘ller, J. & SyversveenA.R. & and Waagepetersen, R.P. (1998). Log Gaussian Cox processes. Scandinavian Journal of Statistics25, 451-482. · Zbl 0931.60038
[24] Ripley, B.D. (1988). Statistical Inference for Spatial Processes. Cambridge: University Press. · Zbl 0716.62100
[25] Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice and Visualization. New York: Wiley. · Zbl 0850.62006
[26] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Boca Raton: Chapman & Hall. · Zbl 0617.62042
[27] Wand, M.P. & Jones, M.C. (1995). Kernel Smoothing. Boca Raton: Chapman & Hall. · Zbl 0854.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.