×

Preservation of stability and oscillation of Euler-Maclaurin method for differential equation with piecewise constant arguments of alternately advanced and retarded type. (English) Zbl 1335.65064

Summary: This paper is devoted to stability and oscillation analysis of Euler-Maclaurin method for differential equation with piecewise constant arguments \(u'(t)=au(t)+bu(2[(t+1)/2])\). The necessary and sufficient conditions under which the numerical stability regions contain the analytical stability regions are given. Moreover, the conditions of oscillation for the Euler-Maclaurin method are obtained. We show that the Euler-Maclaurin method preserves the oscillation of the exact solution. In addition, the connection between stability and oscillation are discussed theoretically and numerically. Finally, some numerical examples are also provided.

MSC:

65L20 Stability and convergence of numerical methods for ordinary differential equations
65L07 Numerical investigation of stability of solutions to ordinary differential equations
34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
65L03 Numerical methods for functional-differential equations
34K11 Oscillation theory of functional-differential equations

References:

[1] Shah, SM, Wiener, J: Advanced differential equations with piecewise constant argument deviations. Int. J. Math. Math. Sci. 6, 671-703 (1983) · Zbl 0534.34067 · doi:10.1155/S0161171283000599
[2] Cooke, K, Wiener, J: Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl. 99, 265-297 (1984) · Zbl 0557.34059 · doi:10.1016/0022-247X(84)90248-8
[3] Busenberg, S, Cooke, K: Vertically Transmitted Diseases: Models and Dynamics. Springer, Berlin (1993) · Zbl 0837.92021 · doi:10.1007/978-3-642-75301-5
[4] Kupper, T, Yuang, R: On quasi-periodic solutions of differential equations with piecewise constant argument. J. Math. Anal. Appl. 267, 173-193 (2002) · Zbl 1008.34063 · doi:10.1006/jmaa.2001.7761
[5] Cooke, K, Wiener, J: An equation alternately of retarded and advanced type. Proc. Am. Math. Soc. 99, 726-732 (1987) · Zbl 0628.34074 · doi:10.1090/S0002-9939-1987-0877047-8
[6] Jayasree, KN, Deo, SG: Variation of parameters formula for the equation of Cooke and Wiener. Proc. Am. Math. Soc. 112, 75-80 (1991) · Zbl 0727.34057 · doi:10.1090/S0002-9939-1991-1057744-5
[7] Wiener, J, Aftabizadeh, AR: Differential equation alternately of retarded and advanced type. J. Math. Anal. Appl. 129, 243-255 (1988) · Zbl 0671.34063 · doi:10.1016/0022-247X(88)90246-6
[8] Bereketoglu, H, Seyhan, G, Ogun, A: Advanced impulsive differential equations with piecewise constant arguments. Math. Model. Anal. 15, 175-187 (2010) · Zbl 1218.34095 · doi:10.3846/1392-6292.2010.15.175-187
[9] Akhmet, MU: Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal. 68, 794-803 (2008) · Zbl 1173.34042 · doi:10.1016/j.na.2006.11.037
[10] Aftabizadeh, AR, Wiener, J: Oscillatory properties of first order linear functional differential equation. Appl. Anal. 20, 165-187 (1985) · Zbl 0553.34045 · doi:10.1080/00036818508839568
[11] Cabada, A, Ferreiro, JB, Nieto, JJ: Green’s function and comparison principles for first order periodic differential equations with piecewise constant arguments. J. Math. Anal. Appl. 291, 690-697 (2004) · Zbl 1057.34089 · doi:10.1016/j.jmaa.2003.11.022
[12] Wiener, J: Generalized Solutions of Functional Differential Equations. World Scientific, Singapore (1993) · Zbl 0874.34054 · doi:10.1142/9789814343183
[13] Song, MH, Yang, ZW, Liu, MZ: Stability of θ-methods for advanced differential equations with piecewise continuous arguments. Comput. Math. Appl. 49, 1295-1301 (2005) · Zbl 1082.65078 · doi:10.1016/j.camwa.2005.02.002
[14] Liu, MZ, Ma, SF, Yang, ZW: Stability analysis of Runge-Kutta methods for unbounded retarded differential equations with piecewise continuous arguments. Appl. Math. Comput. 191, 57-66 (2007) · Zbl 1193.65122 · doi:10.1016/j.amc.2006.12.008
[15] Liang, H, Liu, MZ, Yang, ZW: Stability analysis of Runge-Kutta methods for systems u′(t)=Lu(t)+Mu([t])\(u'(t)=Lu(t)+Mu([t])\). Appl. Math. Comput. 228, 463-476 (2014) · Zbl 1364.65144 · doi:10.1016/j.amc.2013.12.013
[16] Lv, WJ, Yang, ZW, Liu, MZ: Numerical stability analysis of differential equations with piecewise constant arguments with complex coefficients. Appl. Math. Comput. 218, 45-54 (2011) · Zbl 1252.65133 · doi:10.1016/j.amc.2011.05.042
[17] Wang, WS: Stability of solutions of nonlinear neutral differential equations with piecewise constant delay and their discretizations. Appl. Math. Comput. 219, 4590-4600 (2013) · Zbl 06447266 · doi:10.1016/j.amc.2012.10.070
[18] Liang, H, Shi, DY, Lv, WJ: Convergence and asymptotic stability of Galerkin methods for a partial differential equation with piecewise constant argument. Appl. Math. Comput. 217, 854-860 (2010) · Zbl 1204.65110 · doi:10.1016/j.amc.2010.06.028
[19] Liang, H, Liu, MZ, Lv, WJ: Stability of θ-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments. Appl. Math. Lett. 23, 198-206 (2010) · Zbl 1209.65091 · doi:10.1016/j.aml.2009.09.012
[20] Liu, MZ, Gao, JF, Yang, ZW: Oscillation analysis of numerical solution in the θ-methods for equation x′(t)+ax(t)+a1x([t−1])=\(0x'(t)+ax(t)+a_1x([t-1])=0\). Appl. Math. Comput. 186, 566-578 (2007) · Zbl 1118.65080 · doi:10.1016/j.amc.2006.07.119
[21] Liu, MZ, Gao, JF, Yang, ZW: Preservation of oscillations of the Runge-Kutta method for equation x′(t)+ax(t)+a1x([t−1])=\(0x'(t)+ax(t)+a_1x([t-1])=0\). Comput. Math. Appl. 58, 1113-1125 (2009) · Zbl 1189.65143 · doi:10.1016/j.camwa.2009.07.030
[22] Wang, Q, Zhu, QY, Liu, MZ: Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type. J. Comput. Appl. Math. 235, 1542-1552 (2011) · Zbl 1207.65103 · doi:10.1016/j.cam.2010.08.041
[23] Song, MH, Liu, MZ: Numerical stability and oscillation of the Runge-Kutta methods for the differential equations with piecewise continuous arguments alternately of retarded and advanced type. J. Inequal. Appl. 2012, Article ID 290 (2012) · Zbl 1280.65070 · doi:10.1186/1029-242X-2012-290
[24] Lv, WJ, Yang, ZW, Liu, MZ: Stability of the Euler-Maclaurin methods for neutral differential equations with piecewise continuous arguments. Appl. Math. Comput. 186, 1480-1487 (2007) · Zbl 1175.65088 · doi:10.1016/j.amc.2006.07.158
[25] Rota, GC: Combinatorial snapshot. Math. Intell. 21, 8-14 (1999) · Zbl 1052.05500 · doi:10.1007/BF03024840
[26] Munro, WD: Note on the Euler-Maclaurin formula. Am. Math. Mon. 65, 201-203 (1958) · doi:10.2307/2310068
[27] Berndt, BC, Schoenfeld, L: Periodic analogues of the Euler-Maclaurin and Poisson summation formulas with applications to number theory. Acta Arith. 28, 23-68 (1975) · Zbl 0268.10008
[28] Atkinson, KE: An Introduction to Numerical Analysis. Wiley, New York (1989) · Zbl 0718.65001
[29] Gessel, IM: On Miki’s identity for Bernoulli numbers. J. Number Theory 110, 75-82 (2005) · Zbl 1073.11013 · doi:10.1016/j.jnt.2003.08.010
[30] Agoh, T, Dilcher, K: Shortened recurrence relations for Bernoulli numbers. Discrete Math. 309, 887-898 (2009) · Zbl 1171.11010 · doi:10.1016/j.disc.2008.01.030
[31] Agoh, T, Dilcher, K: Integrals of products of Bernoulli polynomials. J. Math. Anal. Appl. 381, 10-16 (2011) · Zbl 1215.11014 · doi:10.1016/j.jmaa.2011.03.061
[32] Bérczes, A, Luca, F: On the largest prime factor of numerators of Bernoulli numbers. Indag. Math. 23, 128-134 (2012) · Zbl 1337.11009 · doi:10.1016/j.indag.2011.11.003
[33] Stoer, J, Bulirsh, R: Introduction to Numerical Analysis. Springer, New York (1993) · Zbl 0771.65002 · doi:10.1007/978-1-4757-2272-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.