×

On a class of Lebesgue-Ljunggren-Nagell type equations. (English) Zbl 1461.11051

Summary: Given odd, coprime integers \(a, b \; (a > 0)\), we consider the Diophantine equation \(a x^2 + b^{2 l} = 4 y^n, x, y \in \mathbb{Z}, l \in \mathbb{N}, n\) odd prime, \( \gcd(x, y) = 1\). We completely solve the above Diophantine equation for \(a \in \{7, 11, 19, 43, 67, 163 \} \), and \(b\) a power of an odd prime, under the conditions \(2^{n - 1} b^l \not\equiv \pm 1(\text{mod } a)\) and \(\gcd(n, b) = 1\). For other square-free integers \(a > 3\) and \(b\) a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers \(x, y\) with \(( \gcd(x, y) = 1), l \in \mathbb{N}\) and all odd primes \(n > 3\), satisfying \(2^{n - 1} b^l \not\equiv \pm 1(\text{mod } a), \gcd(n, b) = 1\), and \(\gcd(n, h(- a)) = 1\), where \(h(- a)\) denotes the class number of the imaginary quadratic field \(\mathbb{Q}(\sqrt{ - a})\).

MSC:

11D61 Exponential Diophantine equations
11B39 Fibonacci and Lucas numbers and polynomials and generalizations

Software:

Magma

References:

[1] Abu Muriefah, F. S.; Bugeaud, Y., The Diophantine equation \(x^2 + C = y^n\): a brief overview, Rev. Colomb. Mat., 40, 1, 31-37 (2006) · Zbl 1189.11019
[2] Andreescu, T.; Andrica, D., Quadratic Diophantine Equations (2015), Springer · Zbl 1376.11001
[3] Arif, S. A.; Al-Ali, A. S., On the Diophantine equation \(a x^2 + b^m = 4 y^n\), Acta Arith., 103, 343-346 (2002) · Zbl 1009.11024
[4] Bennett, M. A.; Skinner, Ch. M., Ternary Diophantine equations via Galois representations and modular forms, Can. J. Math., 56, 1, 23-54 (2004) · Zbl 1053.11025
[5] Berczés, A.; Pink, I., On generalized Lebesgue-Ramanujan-Nagell equations, An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, 22, 1, 51-71 (2014) · Zbl 1340.11039
[6] Bilu, Y., On Le’s and Bugeaud’s papers about the equation \(a x^2 + b^{2 m + 1} = 4 c^p\), Monatshefte Math., 137, 1-3 (2002) · Zbl 1012.11023
[7] Bilu, Y.; Hanrot, G.; Voutier, P. M., Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539, 75-122 (2001), (with an appendix by M. Mignotte) · Zbl 0995.11010
[8] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system I. The user language, J. Symb. Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039
[9] Bugeaud, Y., On some exponential Diophantine equations, Monatshefte Math., 132, 93-97 (2001) · Zbl 1014.11023
[10] Bugeaud, Y.; Mignotte, M.; Siksek, S., Sur les nombres de Fibonacci de la forme \(q^k y^p\), C. R. Acad. Sci. Paris, Ser. I, 339, 327-330 (2004) · Zbl 1113.11010
[11] Bugeaud, Y.; Mignotte, M.; Siksek, S., Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math., 163, 969-1018 (2006) · Zbl 1113.11021
[12] Cohen, H., Number Theory Volume I: Tools and Diophantine Equations (2007), Springer · Zbl 1119.11001
[13] Cohn, J. H.E., Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Ass., 7, 24-28 (1965) · Zbl 0127.01902
[14] Dahmen, S. R., A refined modular approach to the Diophantine equation \(x^2 + y^{2 n} = z^3\), Int. J. Number Theory, 7, 1303-1316 (2011) · Zbl 1226.11043
[15] Dieulefait, L.; Urroz, J., Solving Fermat-type equations via \(\mathbb{Q} \)-curves over polyquadratic fields, J. Reine Angew. Math., 633, 183-195 (2009) · Zbl 1250.11033
[16] Laradji, A.; Mignotte, M.; Tzanakis, N., On \(p x^2 + q^{2 n} = y^p\) and related Diophantine equations, J. Number Theory, 131, 1575-1596 (2011) · Zbl 1229.11055
[17] Ljunggren, W., Über die unbestimmic Gleichung \(A x^2 - B y^4 = C\), Arch. Math. Naturvidensk., 41, 10 (1938), 18 pp · JFM 64.0975.05
[18] Ljunggren, W., Über die Gleichungen \(1 + D x^2 = 2 y^n\) und \(1 + D x^2 = 4 y^n\), Norsk. Vid. Selsk. Forh., 15, 30, 115-118 (1943) · JFM 68.0069.02
[19] Ljunggren, W., On the Diophantine equation \(x^2 + 4 = A y^2\), Det. Kgl. Norske Vid.-Selsk. Forh., 24, 18, 82-84 (1951) · Zbl 0046.26503
[20] Luca, F.; Patel, V., On perfect powers that are sums of two Fibonacci numbers, J. Number Theory, 189, 90-96 (2018) · Zbl 1467.11038
[21] Pink, I., On the Diophantine equation \(x^2 + ( p_1^{z_1} . . . p_s^{z_s} )^2 = 2 y^n\), Publ. Math. (Debr.), 65, 205-213 (2004) · Zbl 1064.11027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.