×

Finiteness results for \(F\)-Diophantine sets. (English) Zbl 1396.11056

Let \(F\in \mathbb Z[X,Y]\) be a bivariate polynomial, then the authors of the paper under review call a set \(A\subseteq \mathbb Z\) \((F,m)\)-Diophantine if \(F(a,b)\) is an \(m\)-th power for any \(a,b\in A\) with \(a\neq b\). In case that \(F(x,y)=xy+1\) and \(m=2\) this definition coincides with classical Diophantine tuples. Under some mild technical assumptions they show finiteness results for \((F,m)\)-Diophantine sets. In particular, they give a complete characterization of all pairs \((F,m)\) for which infinite \((F,m)\)-Diophantine sets exist.

MSC:

11D61 Exponential Diophantine equations

Software:

SageMath
Full Text: DOI

References:

[1] Baker, A.: Bounds for the solutions of the hyperelliptic equation. Proc. Camb. Philos. Soc. 65, 439-444 (1969) · Zbl 0174.33803 · doi:10.1017/S0305004100044418
[2] Baker, A., Davenport, H.: The equations \[3x^2 - 2 = y^23\] x2-2=y2 and \[8x^2 - 7 = z^28\] x2-7=z2. Q. J. Math. Oxford Ser. 20(2), 129-137 (1969) · Zbl 0177.06802 · doi:10.1093/qmath/20.1.129
[3] Bérczes, A., Dujella, A., Hajdu, L., Luca, F.: On the size of sets whose elements have perfect power \[n\] n-shifted products. Publ. Math. Debr. 79, 325-339 (2011) · Zbl 1249.11036 · doi:10.5486/PMD.2011.5155
[4] Brindza, B.: On \[SS\]-integral solutions of the equation \[y^m=f(x)\] ym=f(x). Acta Math. Hung. 44, 133-139 (1984) · Zbl 0552.10009 · doi:10.1007/BF01974110
[5] Bugeaud, Y., Dujella, A.: On a problem of Diophantus for higher powers. Math. Proc. Camb. Philos. Soc. 135, 1-10 (2003) · Zbl 1042.11019 · doi:10.1017/S0305004102006588
[6] Bugeaud, Y., Gyarmati, K.: On generalizations of a problem of Diophantus. Ill. J. Math. 48, 1105-1115 (2004) · Zbl 1065.11015
[7] Choudhry, A.: Sextuples of integers whose sums in pairs are squares. Int. J. Number Theory. 11, 543-555 (2015) · Zbl 1369.11024 · doi:10.1142/S1793042115500281
[8] Darmon, H., Granville, A.: On the equations \[x^p+y^q=z^r\] xp+yq=zr and \[z^m=f(x, y)\] zm=f(x,y). Bull. Lond. Math. Soc. 27, 513-544 (1995) · Zbl 0838.11023 · doi:10.1112/blms/27.6.513
[9] Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183-214 (2004) · Zbl 1037.11019
[10] Dujella, A.: Diophantine \[m\] m-tuples. http://web.math.hr/ duje/dtuples.html. Accessed 17 July 2015 · Zbl 1046.11034
[11] Guy, R.K.: Unsolved Problems in Number Theory, 3rd edn. Springer, New York (2004) · Zbl 1058.11001 · doi:10.1007/978-0-387-26677-0
[12] Kurosh, A.G.: Higher Algebra. Mir Publishers, Moscow (1980) · Zbl 0038.15104
[13] Lagrange, J.: Six entiers dont les sommes deux à deux sont des carrés. Acta Arith. 40, 91-96 (1981) · Zbl 0483.10015
[14] LeVeque, W.J.: On the equation \[y^m=f(x)\] ym=f(x). Acta Arith. 9, 209-219 (1964) · Zbl 0127.27201
[15] Luca, F.: On shifted products which are powers. Glas. Mat. Ser. III(40), 13-20 (2005) · Zbl 1123.11011 · doi:10.3336/gm.40.1.02
[16] Schinzel, A., Tijdeman, R.: On the equation \[y^m=P(x)\] ym=P(x). Acta Arith. 31, 199-204 (1976) · Zbl 0303.10016
[17] Stein, W.A. et al.: Sage Mathematics Software (Version 6.0), The Sage Development Team (2013). http://www.sagemath.org
[18] Stewart, C.L.: On sets of integers whose shifted products are powers. J. Comb. Theory Ser. A 115, 662-673 (2008) · Zbl 1142.11009 · doi:10.1016/j.jcta.2007.07.010
[19] Szalay, L.: Algorithm to solve certain ternary quartic Diophantine equations. Turk. J. Math. 37, 733-738 (2013) · Zbl 1362.11042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.