×

Hermite equivalence of polynomials. (English) Zbl 1534.11034

Ch. Hermite [J. Reine Angew. Math. 53, 182–192 (1857; ERAM 053.1391cj)] attached to a polynomial \[ f(X)=\sum_{j=0}^n f_{n-j}X^j =f_0\prod_{i=1}^n(X-\alpha_i)\in \mathbb Z[X] \] the quadratic form \[ [f](\bar X)=a^{n-1}\prod_{i=1}^n\sum_{j=1}^n\alpha_i^{n-j}X_j, \] where \(\bar X\) is the column vector \((X_1,\dots,X_n)\), and called two polynomials \(f,g\in \mathbb Z[X]\) of the same degree equivalent if with some matrix \(U\in \mathrm{GL}_n(\mathbb Z)\) one has \([g](U\bar X) = \pm[f](\bar X)\).
The authors present in Theorem 1.2 an interpretation of Hermite equivalence in terms of invariant orders \(R_f\) in \(\mathbb Q[X]/(f)\) and show that two monic polynomials \(f,g\) of non-zero discriminant are Hermite equivalent if and only if the associated invariant orders \(R_f,R_g\) are isomorphic. This may fail for non-monic polynomials (such examples are given in Theorem 1.4) but is true under an additional condition. This implies in particular that if the monic polynomials \(f,g\) are \(\mathrm{GL}_2(\mathbb Z)\)-equivalent, then they are also Hermite equivalent.
Theorem 1.3 gives explicit bounds for the number of Hermite equivalence classes of polynomials of given degree and discriminant and shows that every such class has a representative with bounded height. Moreover bounds are given for the number of \(\mathrm{GL}_2(\mathbb Z)\)-equivalence and \(\mathbb Z\)-equivalence classes of polynomials in a Hermite equivalence class.

MSC:

11C08 Polynomials in number theory

Citations:

ERAM 053.1391cj

Software:

MathOverflow

References:

[1] M. A. Bennett, On the representation of unity by binary cubic forms, Trans. Amer. Math. Soc. 353 (2001), 1507-1534. · Zbl 0972.11014
[2] A. Bérczes, J.-H. Evertse, and K. Győry, Multiply monogenic orders, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 12 (2013), 467-497. · Zbl 1319.11070
[3] M. Bhargava, Higher composition laws. III. The parametrization of quartic rings, Ann. of Math. (2) 159 (2004), 1329-1360. · Zbl 1169.11045
[4] M. Bhargava, On the number of monogenizations of a quartic order (with an appendix by S. Akhtari), Publ. Math. Debrecen 100 (2022), 513-531. · Zbl 1499.11328
[5] Y. Bilu, I. Gaál, and K. Győry, Index form equations in sextic fields: a hard compu-tation Acta Arith. 115 (2004), 85-96. · Zbl 1064.11084
[6] B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. (3), 24 (1972), 385-394. · Zbl 0248.12002
[7] B. Delaunay, Über die Darstellung der Zahlen durch die binären kubischen Formen von negativer Diskriminante, Math. Z. 31 (1930), 1-26. · JFM 55.0722.02
[8] B. N. Delone and D. K. Faddeev, The Theory of Irrationalities of the Third Degree, Transl. Math. Monogr. 10, Amer. Math. Soc., Providence, R.I., 1964. · Zbl 0133.30202
[9] G. Dumas, Sur quelques cas d’irreductibilité des polynomes à coefficients rationnels, J. Math. Pures Appl. (6), 2 (1906), 191-258. · JFM 37.0096.01
[10] M. Emerton, Does (the ideal class of ) the different of a number field have a canonical square root? https://mathoverflow.net/q/52815 (2011).
[11] J.-H. Evertse, A survey on monogenic orders, Publ. Math. Debrecen 79 (2011), 411-422. · Zbl 1249.11102
[12] J.-H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compos. Math. 79 (1991), 169-204. · Zbl 0746.11020
[13] J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine Number Theory, New Math. Monogr. 32, Cambridge Univ. Press, Cambridge, 2017. · Zbl 1361.11002
[14] I. Gaál, Diophantine Equations and Power Integral Bases, Theory and Algorithms, Birkhäuser/Springer, Cham, 2019, 2nd ed. of [MR1896601]. · Zbl 1465.11090
[15] I. Gaál and K. Győry, Index form equations in quintic fields, Acta Arith. 89 (1999), 379-396. · Zbl 0930.11091
[16] C. F. Gauss, Disquisitiones arithmeticae, Yale Univ. Press, New Haven, CN, 1966; translated into English by A. A. Clarke, SJ. · Zbl 0136.32301
[17] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973), 419-426. · Zbl 0269.12001
[18] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné. II, Publ. Math. Debrecen 21 (1974), 125-144. · Zbl 0303.12001
[19] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné. III, Publ. Math. Debrecen 23 (1976), 141-165. · Zbl 0354.10041
[20] K. Győry, On polynomials with integer coefficients and given discriminant. IV, Publ. Math. Debrecen 25 (1978), 155-167. · Zbl 0405.12003
[21] K. Győry, On polynomials with integer coefficients and given discriminant. V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190. · Zbl 0402.10053
[22] K. Győry, Corps de nombres algébriques d’anneau d’entiers monogène, in: Séminaire Delange-Pisot-Poitou, 20e année: 1978/1979, Théorie des nombres, Fasc. 2, exp. 26, 7 pp., Secrétariat Math., Paris, 1980. · Zbl 0433.12001
[23] K. Győry, Upper bounds for the degrees of decomposable forms of given discriminant, Acta Arith. 66 (1994), 261-268. · Zbl 0803.11022
[24] K. Győry, Bounds for the solutions of decomposable form equations, Publ. Math. Debrecen 52 (1998), 1-31. · Zbl 0902.11015
[25] K. Győry, Discriminant form and index form equations, in: Algebraic Number Theory and Diophantine Analysis (Graz, 1998), de Gruyter, Berlin, 2000, 191-214. · Zbl 0962.11020
[26] E. Hecke, Lectures on the Theory of Algebraic Numbers, Grad. Texts in Math. 77, Springer, New York, 1981. · Zbl 0504.12001
[27] C. Hermite, Note sur la réduction des fonctions homogènes à coefficients entiers et à deux indéterminées, J. Reine Angew. Math. 36 (1848), 357-364. · ERAM 036.1015cj
[28] C. Hermite, Sur l’introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math. 41 (1851), 191-216. · ERAM 041.1126cj
[29] C. Hermite, Sur la théorie des formes quadratiques. Premier mémoire, J. Reine Angew. Math. 47 (1854), 313-342. · ERAM 047.1273cj
[30] C. Hermite, Extrait d’une lettre de M. C. Hermite à M. Borchardt sur le nombre limité d’irrationalités auxquelles se réduisent les racines des équations à coefficients entiers complexes d’un degré et d’un discriminant donnés, J. Reine Angew. Math. 53 (1857), 182-192. · ERAM 053.1391cj
[31] G. Julia, Étude sur les formes binaires non quadratiques à indéterminées réelles, ou complexes, ou à indéterminées conjuguées. Thèse, Faculté des Sciences de Paris, 1917, 300 pp.
[32] L.-C. Kappe and B. Warren, An elementary test for the Galois group of a quartic polynomial, Amer. Math. Monthly 96 (1989), 133-137. · Zbl 0702.11075
[33] J.-L. Lagrange, Recherches d’arithmétique, Nouv. Mém. Acad. Berlin 1773 et 1775;
[34] Oeuvres III (1773), 695-758.
[35] J. L. Mott, Eisenstein-type irreducibility criteria, in: Zero-Dimensional Commutative Rings (Knoxville, TN, 1994), Lecture Notes in Pure Appl. Math. 171, Dekker, New York, 1995, 307-329. · Zbl 0938.12005
[36] T. Nagell, Zur Theorie der kubischen Irrationalitäten, Acta Math. 55 (1930), 33-65. · JFM 56.0168.04
[37] J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad. 28 (1952), 177-181. · Zbl 0047.04405
[38] J. Nakagawa, Binary forms and orders of algebraic number fields, Invent. Math. 97 (1989), 219-235. · Zbl 0647.10018
[39] W. Narkiewicz, The Story of Algebraic Numbers in the First Half of the 20th Century: From Hilbert to Tate, Springer Monogr. Math., Springer, Cham, 2018. · Zbl 1416.11003
[40] J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. (N.S.) 40 (2003), 429-440. · Zbl 1047.11045
[41] D. Simon, La classe invariante d’une forme binaire, C. R. Math. Acad. Sci. Paris 336 (2003), 7-10. · Zbl 1038.11073
[42] D. Simon, A “class group” obstruction for the equation Cy d = F (x, z), J. Théor. Nombres Bordeaux 20 (2008), 811-828. · Zbl 1204.11063
[43] R. P. Stanley, Catalan Numbers, Cambridge Univ. Press, New York, 2015. · Zbl 1317.05010
[44] P. Stevenhagen and H. W. Lenstra, Jr. Chebotarëv and his density theorem, Math. Intelligencer 18 (1996), 26-37. · Zbl 0885.11005
[45] M. M. Wood, Rings and ideals parameterized by binary n-ic forms, J. London Math. Soc. (2), 83 (2011), 208-231. · Zbl 1228.11053
[46] M. M. Wood, Quartic rings associated to binary quartic forms, Int. Math. Res. Notices 2012, 1300-1320. · Zbl 1254.11094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.