×

Combining endogenous and exogenous variables in a special case of non-parametric time series forecasting model. (English. Russian original) Zbl 1373.62466

Mosc. Univ. Comput. Math. Cybern. 40, No. 2, 71-78 (2016); translation from Vestn. Mosk. Univ., Ser. XV 2016, No. 2, 20-27 (2016).
Summary: We address a problem of increasing quality of forecasting time series by taking into account the information about exogenous time series. We aim to improve a non-parametric forecasting algorithm that minimizes the convolution of a histogram of time series with the loss function. We propose to adjust the histogram, using mixtures of conditional histograms as a less sparse alternative to multidimensional histogram and in some cases demonstrate the decrease of loss compared to the basic forecasting algorithm. To the extent of our knowledge, such approach to combining endogenous and exogenous time series is original and has not been proposed yet. The suggested method is illustrated with the data from the Russian Railways.

MSC:

62M20 Inference from stochastic processes and prediction
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G05 Nonparametric estimation
62P20 Applications of statistics to economics
Full Text: DOI

References:

[1] Roopaei, M.; Zolghadri, M.; Emadi, A., Economical forecasting by exogenous variables, 1491-1495 (2008)
[2] P. Syrovátka and L. Grega, Analysis of methodological approaches to evaluation of complementary and substitution relationship in consumer demand for food, Agr. Econ. 48, 456-462 (2002).
[3] P. Whittle, Prediction and Regulation by Linear Least-Square Methods (Univ. Minnesota Press, Minneapolis, Minn, 1983). · Zbl 0646.62079
[4] J. G. De Gooijer and R. J. Hyndman, 25 years of time series forecasting, Int. J. Forecasting, No. 22, 443-473 (2006). · doi:10.1016/j.ijforecast.2006.01.001
[5] D. Peña and I. Sánchez, Multifold predictive validation in armax time series models, J. Am. Stat. Assoc., No. 100, 135-146 (2005). · Zbl 1117.62410 · doi:10.1198/016214504000000610
[6] A. S. Valkov, E. M. Kozhanov, M. M. Medvednikova, et al., Non-parametric forecasting of railroad stations occupancy according to historical data, Machine Learning and Data Analysis 1, 448-465 (2012).
[7] D.W. Scott, On optimal and data-based histograms, Biometrika 66, 605-610 (1979). · Zbl 0417.62031 · doi:10.1093/biomet/66.3.605
[8] W. E. Deming and F. F. Stephan, On a least squares adjustment of a sampled frequency table when the expected marginal totals are known, Ann.Math. Stat. 11, 427-444 (1940). · Zbl 0024.05502 · doi:10.1214/aoms/1177731829
[9] Y.M.M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice (MIT Press., Cambridge, 1976). · Zbl 0332.62039
[10] L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, PIEEE 77, 257-286 (1989).
[11] C. S. Wong and W. K. Li, On a mixture autoregressive conditional heteroscedastic model, J. Am. Stat. Assoc. No. 96, 982-995 (2001). · Zbl 1051.62091 · doi:10.1198/016214501753208645
[12] A. Berchtold, Mixture transition distribution (mtd) modeling of heteroscedastic time series, Comput. Stat. & Data Analysis, No. 41, 399-411 (2003). · Zbl 1256.62048 · doi:10.1016/S0167-9473(02)00191-3
[13] F. Bartolucci and A. Farcomeni, A note on the mixture transition distribution and hidden Markov models, J. Time Ser. Anal. 31, 132-138 (2010). · Zbl 1224.62030 · doi:10.1111/j.1467-9892.2009.00650.x
[14] E. Aitnouri, S. Wang, D. Ziou, et al., Estimation of multi-modal histogram’s pdf using amixture model, Neural, Perallel and Scientific Comput., No. 7, 103-118 (1999).
[15] M. Everingham and B. Thomas, Supervised segmentation and tracking of nonrigid objects using a “mixture of histograms” model, IEEE Image Proc., 1, 62-65 (2001).
[16] Yu-Ren Lai, Kuo-Liang Chung, Guei-Yin Lin, et al., Gaussian mixture modeling of histograms for contrast enhancement, Expert Syst. Appl., No. 39, 6720-6728 (2012). · doi:10.1016/j.eswa.2011.12.018
[17] Schopf, J. M., A practical methodology for defining histograms for predictions and scheduling, 664-671 (2000)
[18] J. Arroyo, G. Gonzalez-Rivera, C. Maté, et al., Smoothing methods for histogram-valued time series: an application to value at risk, Stat. Analysis DataMining. 4, 216-228 (2011). · Zbl 07260279 · doi:10.1002/sam.10114
[19] J. Diebolt and E. H. S. Ip, Stochastic EM: method and application, in Chain Markov Monte Carlo in Practice (Chapman and Hall, London, 1996), Chap. 15, p. 259-273. · Zbl 0840.62025
[20] J. D Spurrier, On the null distribution of the Kruskal-Wallis statistic, J. Nonparametr. Statist. 15, 685-691 (2003). · Zbl 1091.62537 · doi:10.1080/10485250310001634719
[21] V. Koltchinskii, M-estimation, convexity and quantiles, Ann. Stat. 25, 435-477 (1997). · Zbl 0878.62037 · doi:10.1214/aos/1031833659
[22] R. Serfling, Quantile functions for multivariate analysis: Approaches and applications, Stat. Neerl., No. 56, 214-232 (2002). · Zbl 1076.62054 · doi:10.1111/1467-9574.00195
[23] L. Kong and I. Mizera, Quantile tomography: using quantiles with multivariate data, Stat. Sinica, No. 22, 1589-1610 (2012). · Zbl 1359.62175
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.