×

Flexible latent-state modelling of Old Faithful’s eruption inter-arrival times in 2009. (English) Zbl 1334.86011

Summary: This paper is concerned with the analysis of a time series comprising the eruption inter-arrival times of the Old Faithful geyser in 2009. The series is much longer than other well-documented ones and thus gives a more comprehensive insight into the dynamics of the geyser. Basic hidden Markov models with gamma state-dependent distributions and several extensions are implemented. In order to better capture the stochastic dynamics exhibited by Old Faithful, the different non-standard models under consideration seek to increase the flexibility of the basic models in various ways: (i) by allowing non-geometric distributions for the times spent in the different states; (ii) by increasing the memory of the underlying Markov chain, with or without assuming additional structure implied by mixture transition distribution models; and (iii) by incorporating feedback from the observation process on the latent process. In each case it is shown how the likelihood can be formulated as a matrix product which can be conveniently maximized numerically.

MSC:

86A32 Geostatistics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62-07 Data analysis (statistics) (MSC2010)

Software:

alr3
Full Text: DOI

References:

[1] Altman, Application of hidden Markov models to multiple sclerosis lesion count data, Stat. Med. 24 pp 2335– (2005) · doi:10.1002/sim.2108
[2] Aston, Distributions associated with general runs and patterns in hidden Markov models, Ann. Appl. Stat. 1 pp 585– (2007) · Zbl 1126.62008 · doi:10.1214/07-AOAS125
[3] Azzalini, A look at some data on the Old Faithful geyser, J. R. Stat. Soc. Ser. C Appl. Stat. 39 pp 357– (1990) · Zbl 0707.62186
[4] Berchtold, The mixture transition distribution model for high-order markov chains and non-Gaussian time series, Statist. Sci. 17 pp 328– (2002) · Zbl 1013.62088 · doi:10.1214/ss/1042727943
[5] Bulla, Computational issues in parameter estimation for stationary hidden Markov models, Comput. Statist. 23 pp 1– (2008) · doi:10.1007/s00180-007-0063-y
[6] Bulla, An R package for analyzing hidden semi-Markov models, Comput. Stat. Data Anal. 54 pp 611– (2009) · Zbl 1464.62011 · doi:10.1016/j.csda.2008.08.025
[7] Cappé, Inference in Hidden Markov Models (2005)
[8] Ferguson, Proceedings of the Symposium on the Applications of Hidden Markov Models to Text and Speech pp 143– (1980)
[9] Guédon, Estimating hidden semi-Markov chains from discrete sequences, J. Comput. Graph. Statist. 12 pp 604– (2003) · doi:10.1198/1061860032030
[10] Guédon, Hidden hybrid Markov/semi-Markov chains, Comput. Stat. Data Anal. 49 pp 663– (2005) · Zbl 1429.62366 · doi:10.1016/j.csda.2004.05.033
[11] Hurwitz, Climate-induced variations of geyser periodicity in Yellowstone National Park, USA, Geology 36 pp 451– (2008) · doi:10.1130/G24723A.1
[12] Langrock, Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models, J. Emp. Finan. 19 pp 147– (2012) · doi:10.1016/j.jempfin.2011.09.003
[13] Langrock, Hidden Markov models with arbitrary dwell-time distributions, Comput. Stat. Data Anal. 55 pp 715– (2011) · Zbl 1247.62290 · doi:10.1016/j.csda.2010.06.015
[14] Mcfadden, Frontiers in Econometrics pp 105– (1974)
[15] Du, Efficient training of high-order hidden Markov models using first-order representations, Comput. Speech & Lang. 12 pp 23– (1998) · doi:10.1006/csla.1997.0037
[16] Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, IEEE Proc. 77 pp 257– (1989) · doi:10.1109/5.18626
[17] Raftery, A Model for High-Order Markov Chains, J. R. Stat. Soc. Ser. B 47 pp 528– (1985a) · Zbl 0593.62091
[18] Raftery, A new model for discrete-valued time series: autocorrelations and extensions, Rassegna di Metodi Statistici ed Applicazioni 3-4 pp 149– (1985b)
[19] Robert, Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation, Stat. Comput. 8 pp 145– (1998) · doi:10.1023/A:1008938201645
[20] Sansom, Fitting hidden semi-Markov models to breakpoint rainfall data, J. Appl. Probab. 38A pp 142– (2001) · Zbl 1008.62110 · doi:10.1239/jap/1085496598
[21] Schliehe-diecks, On the application of mixed hidden Markov models to multiple behavioural time series, Interface Focus 2 pp 180– (2012) · doi:10.1098/rsfs.2011.0077
[22] Sibisi, Prior Distributions on Measure Space, J. R. Stat. Soc. Ser. B 59 pp 217– (1997) · Zbl 0889.62002 · doi:10.1111/1467-9868.00065
[23] Silverman, Density Estimation for Statistics and Data Analysis (1986) · Zbl 0617.62042 · doi:10.1007/978-1-4899-3324-9
[24] Spezia, Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes, J. Time Series Analysis 31 pp 1– (2010) · Zbl 1222.62110 · doi:10.1111/j.1467-9892.2009.00635.x
[25] Titterington, Some recent research in the analysis of mixture distributions, Statistics 21 pp 619– (1990) · Zbl 0714.62023 · doi:10.1080/02331889008802274
[26] Varin, A note on composite likelihood inference and model selection, Biometrika 92 pp 519– (2005) · Zbl 1183.62037 · doi:10.1093/biomet/92.3.519
[27] Weisberg, Applied Linear Regression. 3rd edn (2005) · Zbl 1068.62077 · doi:10.1002/0471704091
[28] Welch, Hidden Markov models and the Baum Welch algorithm, IEEE Information Theory Society Newsletter 53 pp 10– (2003)
[29] Zucchini, Hidden Markov Models for Time Series: An Introduction Using R (2009) · Zbl 1180.62130 · doi:10.1201/9781420010893
[30] Zucchini, Modeling time series of animal behavior by means of a latent-state model with feedback, Biometrics 64 pp 807– (2008) · Zbl 1170.62408 · doi:10.1111/j.1541-0420.2007.00939.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.