×

Supersonic turbulent boundary layer drag control using spanwise wall oscillation. (English) Zbl 1430.76349

Summary: Spanwise wall oscillation has been extensively studied to explore possible drag control methods, mechanisms and efficacy – particularly for incompressible flows. We performed direct numerical simulation for fully developed turbulent channel flow to establish how effective spanwise wall oscillation is when the flow is compressible and also to document its drag reduction \((\mathcal{DR})\) trend with Mach number. Drag reduction \(\mathcal{DR}\) is first investigated for three different bulk Mach numbers \(M_b=0.3, 0.8\) and \(1.5\) at a fixed bulk Reynolds number \(Re_b=3000\). At a given velocity amplitude \(A^+ (=12), \mathcal{DR}\) at \(M_b=0.3\) agrees with the strictly incompressible case; at \(M_b=0.8, \mathcal{DR}\) exhibits a similar trend to that at \(M_b=0.3\): \( \mathcal{DR}\) increases with the oscillation period \(T^+\) to a maximum and then decreases gradually. However, at \(M_b=1.5, \mathcal{DR}\) monotonically increases with \(T^+\). In addition, the maximum \(\mathcal{DR}\) is found to increase with \(M_b\). For \(M_b=1.5\), similar to the incompressible case, \( \mathcal{DR}\) increases with \(A^+\), but the rate of increase decreases at larger \(A^+\). Unlike the flow behaviour when incompressible, the flow surprisingly relaminarizes when it is supersonic (at \(A^+=18\) and \(T^+=300)\) – this enigmatic behaviour requires further detailed studies for different domain sizes, \(Re_b\) and \(M_b\). The Reynolds number effect on \(\mathcal{DR}\) is also investigated. Although \(\mathcal{DR}\) generally decreases with \(Re_b\), it is less affected at small \(T^+\), but drops rapidly at large \(T^+\). We introduce a simple scaling for the oscillation period as \(T^*=T_C^+l_I^+/l_C^+\), with \(l_I^+\) and \(l_C^+\) denoting the mean streak spacing for incompressible and compressible cases, respectively. At the same semi-local Reynolds number \(Re_{\tau c}^* \equiv Re_\tau \sqrt{\overline{\rho}_c/\overline{\rho}_w}/(\overline{\mu}_c/\overline{\mu}_w)\) (subscripts \(c\) and \(w\) denote quantities at the channel centre and wall, respectively), \( \mathcal{DR}\) as a function of \(T^*\) exhibits good agreement between the supersonic and strictly incompressible cases, with the optimal oscillation period becoming \(M_b\)-invariant as \(T_{opt}^*\approx 100\).

MSC:

76J20 Supersonic flows
76F40 Turbulent boundary layers
76F10 Shear flows and turbulence
Full Text: DOI

References:

[1] Agostini, L., Touber, E. & Leschziner, M. A.2014Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at Re_𝜏 = 1000. J. Fluid Mech.743, 606-635.10.1017/jfm.2014.40
[2] Armenio, V. & Sarkar, S.2002An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech.459, 1-42.10.1017/S0022112002007851 · Zbl 1022.76027
[3] Barkley, D. & Tuckerman, L. S.2005Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett.94 (1), 014502.10.1103/PhysRevLett.94.014502 · Zbl 1124.76018
[4] Baron, A. & Quadrio, M.1995Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res.55 (4), 311-326.10.1007/BF00856638 · Zbl 0900.76165
[5] Batchelor, G. K.1967An Introduction to Fluid Dynamics. Cambridge University Press. · Zbl 0152.44402
[6] Bechert, D. W., Bruse, M., Hage, W., Van der Hoeven, J. G. T. & Hoppe, G.1997Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech.338, 59-87.10.1017/S0022112096004673
[7] Berger, T. W., Kim, J., Lee, C. & Lim, J.2000Turbulent boundary layer control utilizing the lorentz force. Phys. Fluids12 (3), 631-649.10.1063/1.870270 · Zbl 1149.76316
[8] Bernardini, M., Pirozzoli, S. & Orlandi, P.2014Velocity statistics in turbulent channel flow up to Re_𝜏 = 4000. J. Fluid Mech.742, 171-191.10.1017/jfm.2013.674
[9] Chen, J., Hussain, F., Pei, J. & She, Z.-S.2014Velocity-vorticity correlation structure in turbulent channel flow. J. Fluid Mech.742, 291-307.10.1017/jfm.2014.3
[10] Choi, H., Moin, P. & Kim, J.1994Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech.262, 75-110.10.1017/S0022112094000431 · Zbl 0800.76191
[11] Choi, J.-I., Xu, C.-X. & Sung, H. J.2002Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J.40 (5), 842-850.10.2514/2.1750
[12] Coleman, G. N., Kim, J. & Moser, R. D.1995A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech.305, 159-183.10.1017/S0022112095004587 · Zbl 0960.76517
[13] Deng, B.-Q., Xu, C.-X., Huang, W.-X. & Cui, G.-X.2014Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. J. Turbul.15 (2), 122-143.10.1080/14685248.2013.877144
[14] van Driest, E. R.1951Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci.18 (3), 145-160. · Zbl 0045.12903
[15] Duan, L., Beekman, I. & Martin, M. P.2010Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech.655, 419-445.10.1017/S0022112010000959 · Zbl 1197.76078
[16] Duan, L. & Choudhari, M.2012Effects of riblets on skin friction and heat transfer in high-speed turbulent boundary layers. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2012-1108.
[17] Duan, L. & Choudhari, M. M.2014Direct numerical simulations of high-speed turbulent boundary layers over riblets. In 52nd Aerospace Sciences Meeting, AIAA Paper 2014-0934.
[18] Duguet, Y., Schlatter, P. & Henningson, D. S.2010Formation of turbulent patterns near the onset of transition in plane Couette flow. J. Fluid Mech.650, 119-129.10.1017/S0022112010000297 · Zbl 1189.76254
[19] Fang, J., Lu, L.-P. & Shao, L.2010Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation. Acta Mech. Sin.26 (3), 391-399. · Zbl 1269.76046
[20] Foysi, H., Sarkar, S. & Friedrich, R.2004Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech.509, 207-216.10.1017/S0022112004009371 · Zbl 1066.76035
[21] Fukagata, K., Iwamoto, K. & Kasagi, N.2002Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids14 (11), L73-L76.10.1063/1.1516779 · Zbl 1185.76134
[22] García-Mayoral, R. & Jiménez, J.2011Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A369 (1940), 1412-1427.10.1098/rsta.2010.0359
[23] Garcia-Villalba, M. & Del Alamo, J. C.2011Turbulence modification by stable stratification in channel flow. Phys. Fluids23 (4), 045104.10.1063/1.3560359
[24] Garg, R. P., Ferziger, J. H., Monismith, S. G. & Koseff, J. R.2000Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism. Phys. Fluids12 (10), 2569-2594.10.1063/1.1288608 · Zbl 1184.76175
[25] Gatti, D. & Quadrio, M.2013Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids25 (12), 125109.10.1063/1.4849537
[26] Gatti, D. & Quadrio, M.2016Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech.802, 553-582.10.1017/jfm.2016.485 · Zbl 1462.76121
[27] Gomez, T., Flutet, V. & Sagaut, P.2009Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Phys. Rev. E79 (3), 035301.
[28] Guala, M., Hommema, S. E. & Adrian, R. J.2006Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.554, 521-542.10.1017/S0022112006008871 · Zbl 1156.76316
[29] Hack, M. J. P. & Zaki, T. A.2014The influence of harmonic wall motion on transitional boundary layers. J. Fluid Mech.760, 63-94.10.1017/jfm.2014.591
[30] Hadjadj, A., Ben-Nasr, O., Shadloo, M. S. & Chaudhuri, A.2015Effect of wall temperature in supersonic turbulent boundary layers: a numerical study. Intl J. Heat Mass Transfer81, 426-438.10.1016/j.ijheatmasstransfer.2014.10.025 · Zbl 1408.76328
[31] Huang, P. G., Coleman, G. N. & Bradshaw, P.1995Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech.305, 185-218.10.1017/S0022112095004599 · Zbl 0857.76036
[32] Hurst, E., Yang, Q. & Chung, Y. M.2014The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech.759, 28-55.10.1017/jfm.2014.524
[33] Hutchins, N. & Marusic, I.2007Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.579, 1-28.10.1017/S0022112006003946 · Zbl 1113.76004
[34] Iida, O., Kasagi, N. & Nagano, Y.2002Direct numerical simulation of turbulent channel flow under stable density stratification. Intl J. Heat Mass Transfer45 (8), 1693-1703.10.1016/S0017-9310(01)00271-X · Zbl 1121.76347
[35] Jiménez, J.2004Turbulent flows over rough walls. Annu. Rev. Fluid Mech.36, 173-196.10.1146/annurev.fluid.36.050802.122103 · Zbl 1125.76348
[36] Jung, W. J., Mangiavacchi, N. & Akhavan, R.1992Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A4 (8), 1605-1607.10.1063/1.858381
[37] Kametani, Y. & Fukagata, K.2011Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech.681, 154-172.10.1017/jfm.2011.219 · Zbl 1241.76281
[38] Kametani, Y., Fukagata, K., Örlü, R. & Schlatter, P.2015Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow55, 132-142.10.1016/j.ijheatfluidflow.2015.05.019
[39] Kametani, Y., Kotake, A., Fukagata, K. & Tokugawa, N.2017Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows. Phys. Rev. Fluids2 (12), 123904.10.1103/PhysRevFluids.2.123904
[40] Kim, J., Moin, P. & Moser, R.1987Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.177, 133-166.10.1017/S0022112087000892 · Zbl 0616.76071
[41] Laadhari, F., Skandaji, L. & Morel, R.1994Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids6 (10), 3218-3220.10.1063/1.868052
[42] Lardeau, S. & Leschziner, M. A.2013The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids25 (7), 075109.10.1063/1.4816290
[43] Lee, M. & Moser, R. D.2015Direct numerical simulation of turbulent channel flow up to Re = 5200. J. Fluid Mech.774, 395-415.10.1017/jfm.2015.268
[44] Lozano-Durán, A. & Jiménez, J.2014Effect of the computational domain on direct simulations of turbulent channels up to Re_𝜏 = 4200. Phys. Fluids26 (1), 011702.10.1063/1.4862918
[45] Lozano-Duran, A. & Jiménez, J.2014Effect of the computational domain on direct simulations of turbulent channels up to Re_𝜏 = 4200. Phys. Fluids26 (1), 011702.10.1063/1.4862918
[46] Marusic, I., Mathis, R. & Hutchins, N.2010Predictive model for wall-bounded turbulent flow. Science329 (5988), 193-196.10.1126/science.1188765 · Zbl 1226.76015
[47] Min, T. & Kim, J.2004Effects of hydrophobic surface on skin-friction drag. Phys. Fluids16 (7), L55-L58.10.1063/1.1755723 · Zbl 1186.76377
[48] Mittal, R. & Moin, P.1997Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J.35 (8), 1415-1417.10.2514/2.253 · Zbl 0900.76336
[49] Moarref, R. & Jovanović, M. R.2012Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech.707, 205-240.10.1017/jfm.2012.272 · Zbl 1275.76152
[50] Modesti, D. & Pirozzoli, S.2016Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow59, 33-49.10.1016/j.ijheatfluidflow.2016.01.007
[51] Morinishi, Y., Tamano, S. & Nakabayashi, K.2004Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech.502, 273-308.10.1017/S0022112003007705 · Zbl 1134.76363
[52] Nakanishi, R., Mamori, H. & Fukagata, K.2012Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Intl J. Heat Fluid Flow35, 152-159.10.1016/j.ijheatfluidflow.2012.01.007
[53] Ni, W., Lu, L., Ribault, C. L. & Fang, J.2016Direct numerical simulation of supersonic turbulent boundary layer with spanwise wall oscillation. Energies9 (3), 154.10.3390/en9030154
[54] Oliver, T. A., Malaya, N., Ulerich, R. & Moser, R. D.2014Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids26 (3), 035101.10.1063/1.4866813
[55] Orlandi, P. & Fatica, M.1997Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech.343, 43-72.10.1017/S0022112097005715 · Zbl 0901.76047
[56] Patel, A., Boersma, B. J. & Pecnik, R.2016The influence of near-wall density and viscosity gradients on turbulence in channel flows. J. Fluid Mech.809, 793-820.10.1017/jfm.2016.689 · Zbl 1383.76244
[57] Patel, A., Peeters, J. W. R., Boersma, B. J. & Pecnik, R.2015Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids27 (9), 095101.10.1063/1.4929813
[58] Pirozzoli, S. & Bernardini, M.2011Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech.688, 120-168.10.1017/jfm.2011.368 · Zbl 1241.76286
[59] Quadrio, M. & Ricco, P.2003Initial response of a turbulent channel flow to spanwise oscillation of the walls. J. Turbul.4 (7), 1-23.
[60] Quadrio, M. & Ricco, P.2004Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech.521, 251-271.10.1017/S0022112004001855 · Zbl 1065.76121
[61] Quadrio, M., Ricco, P. & Viotti, C.2009Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech.627, 161-178.10.1017/S0022112009006077 · Zbl 1171.76405
[62] Quadrio, M. & Sibilla, S.2000Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech.424, 217-241.10.1017/S0022112000001889 · Zbl 0994.76037
[63] Rai, M. M. & Moin, P.1991Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys.96 (1), 15-53. · Zbl 0726.76072
[64] Ricco, P. & Quadrio, M.2008Wall-oscillation conditions for drag reduction in turbulent channel flow. Intl J. Heat Fluid Flow29 (4), 891-902.10.1016/j.ijheatfluidflow.2007.12.005 · Zbl 1065.76121
[65] Rothstein, J. P.2010Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech.42, 89-109.10.1146/annurev-fluid-121108-145558
[66] Schoppa, W. & Hussain, F.1998A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids10 (5), 1049-1051.10.1063/1.869789 · Zbl 1152.76375
[67] Schoppa, W. & Hussain, F.2002Coherent structure generation in near-wall turbulence. J. Fluid Mech.453, 57-108.10.1017/S002211200100667X · Zbl 1141.76408
[68] Sciacovelli, L., Cinnella, P. & Gloerfelt, X.2017Direct numerical simulations of supersonic turbulent channel flows of dense gases. J. Fluid Mech.821, 153-199.10.1017/jfm.2017.237 · Zbl 1383.76293
[69] Skote, M., Mishra, M. & Wu, Y.2015Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with Reynolds number. Intl J. Aerosp. Engng2015, 891037.
[70] Skote, M., Mishra, M. & Wu, Y.2019Wall oscillation induced drag reduction zone in a turbulent boundary layer. Flow Turbul. Combust.102, 641-666.10.1007/s10494-018-9979-2
[71] Spalart, P. R. & McLean, J. D.2011Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. Lond. A369 (1940), 1556-1569.10.1098/rsta.2010.0369
[72] Touber, E. & Leschziner, M. A.2012Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech.693, 150-200.10.1017/jfm.2011.507 · Zbl 1250.76126
[73] Trettel, A. & Larsson, J.2016Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids28 (2), 026102.10.1063/1.4942022
[74] Wang, Y.-S., Huang, W.-X. & Xu, C.-X.2016Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited. Fluid Dyn. Res.48 (5), 055501.
[75] Xu, C.-X. & Huang, W.-X.2005Transient response of Reynolds stress transport to spanwise wall oscillation in a turbulent channel flow. Phys. Fluids17 (1), 018101.10.1063/1.1827274 · Zbl 1187.76572
[76] Yakeno, A., Hasegawa, Y. & Kasagi, N.2014Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids26 (8), 085109.10.1063/1.4893903
[77] Yao, J., Chen, X. & Hussain, F.2018Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing. J. Fluid Mech.852, 678-709.10.1017/jfm.2018.553 · Zbl 1415.76374
[78] Yao, J., Chen, X. & Hussain, F.2019Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows. Phys. Fluids31 (8), 085108.10.1063/1.5111651
[79] Yao, J., Chen, X., Thomas, F. & Hussain, F.2017Large-scale control strategy for drag reduction in turbulent channel flows. Phys. Rev. Fluids2, 062601.10.1103/PhysRevFluids.2.062601
[80] Yao, J. & Hussain, F.2018Toward vortex identification based on local pressure-minimum criterion in compressible and variable density flows. J. Fluid Mech.850, 5-17.10.1017/jfm.2018.465 · Zbl 1415.76527
[81] Zhang, C., Duan, L. & Choudhari, M. M.2018Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J.56 (11), 4297-4311.10.2514/1.J057296
[82] Zhe, C., ChangPing, Y., Li, L. & XinLiang, L.2016Effect of uniform blowing or suction on hypersonic spatially developing turbulent boundary layers. Sci. Chin. Phys. Mech. Astron.59 (6), 664702.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.