×

On the LS-category of homomorphism of almost nilpotent groups. (English) Zbl 1531.55003

The LS-category \(\mbox{cat}(\phi)\) for a group homomorphism \(\phi : \Gamma \longrightarrow \land \) is the LS-category \(\mbox{cat}(f)\), where the map \(f : B\Gamma \longrightarrow B\land \) is induced by the homomorphism \(\phi\) on fundamental groups. The cohomological dimension of \(\mbox{cd}(\phi)\) is the maximum of \(k\) such that there exists a \(\mathbb Z\land\)-module \(M\) with a non-zero induced homomorphism \( H^k(\land;M) \longrightarrow H^k(\Gamma;M)\). In this paper, the authors prove that \(\mbox{cat}(\phi)=\mbox{cd}(\phi)\) for finitely generated, torsion-free almost nilpotent groups. Furthermore they prove: Let \(f : M^m \longrightarrow N^n\) be a map of infra-nilmanifolds that induces epimorphisms \(\phi : \pi_1(M) \longrightarrow \pi_1(N)\). Then \(\mbox{cat}(\phi)=\mbox{cd}(\phi)=n\). Here, an infra-nilmanifold means a closed manifold diffeomorphic to the orbit space \(G/\Gamma\) of a simply connected nilpotent Lie group \(G\) where the discrete torsion-free subgroup \(\Gamma\) acts on the semidirect product \(G \rtimes K\) where \(K\) is a maximal subgroup of \(\mbox{Aut}(G)\).

MSC:

55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
20J06 Cohomology of groups
55M10 Dimension theory in algebraic topology
22E20 General properties and structure of other Lie groups
22E40 Discrete subgroups of Lie groups

References:

[1] Bechtell, H., The Theory of Groups (1971), Addison-Wesley · Zbl 0516.20009
[2] Berstein, I., On the Lusternik-Schnirelmann category of Grassmannians. Math. Proc. Camb. Philos. Soc., 129-134 (1976) · Zbl 0315.55011
[3] Brown, K., Cohomology of Groups. Graduate Texts in Mathematics (1994), Springer: Springer New York, Heidelberg, Berlin
[4] Cornea, O.; Lupton, G.; Oprea, J.; Tanre, D., Lusternik-Schnirelmann Category (2003), AMS · Zbl 1032.55001
[5] Dranishnikov, A.; Kuanyshov, N., On the LS category of homomorphism. Math. Z. (2023), in press, preprint
[6] Dranishnikov, A.; Sadykov, R., The Lusternik-Schnirelmann category of a connected sum. Fundam. Math., 3, 313-328 (2020) · Zbl 1459.55002
[7] Dranishnikov, A.; Rudyak, Yu., On the Berstein-Svarc theorem in dimension 2. Math. Proc. Camb. Philos. Soc., 2, 407-413 (2009) · Zbl 1171.55002
[8] Eilenberg, S.; Ganea, T., On the Lusternik-Schnirelmann category of abstract groups. Ann. Math., 517-518 (1957) · Zbl 0079.25401
[9] Grant, M.
[10] Kuanyshov, N., On the LS category of homomorphisms of groups with torsion, preprint · Zbl 1527.55003
[11] Lusternik, L.; Schnirelmann, L., Sur le probleme de trois geodesiques fermees sur les surfaces de genre 0. C. R. Acad. Sci. Paris, 269-271 (1929) · JFM 55.0316.02
[12] Mal’tsev, A. I., On a class of homogeneous spaces. Izv. Ross. Akad. Nauk Ser. Mat., 3, 201-212 (1949) · Zbl 0034.01702
[13] Mal’tsev, A. I., Nilpotent groups without torsion. Izv. Ross. Akad. Nauk Ser. Mat., 1, 9-32 (1949)
[14] Palais, R. S., On the existence of slices for actions of non-compact Lie groups. Ann. Math., 295-323 (1961) · Zbl 0103.01802
[15] Raghunathan, M. S., Discrete Subgroups of Lie Groups (1972), Springer · Zbl 0254.22005
[16] Saito, M., Sur certains groupes de Lie resolubles, I, II. Sci. Pap. Coll. Gen. Ed. Univ. Tokyo, 1-11 (1957), 157-168 · Zbl 0079.25701
[17] Schwarz, A., The genus of a fibered space. Tr. Moscov. Mat. Obsc., 11, 217-272 (1961 and 1962), 99-126
[18] Scott, J., On the topological complexity of maps. Topol. Appl. (2022) · Zbl 1494.55005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.