×

Fluctuations of conserved charges at finite temperature from lattice QCD. (English) Zbl 1306.81368

Summary: We present the full results of the Wuppertal-Budapest lattice QCD collaboration on flavor diagonal and non-diagonal quark number susceptibilities with 2 + 1 staggered quark flavors, in a temperature range between 125 and 400 MeV. The light and strange quark masses are set to their physical values. Lattices with \(N_{t} = 6, 8, 10, 12, 16\) are used. We perform a continuum extrapolation of all observables under study. A Symanzik improved gauge and a stout-link improved staggered fermion action is utilized. All results are compared to the Hadron Resonance Gas model predictions: good agreement is found in the temperature region below the transition.

MSC:

81V15 Weak interaction in quantum theory
81T25 Quantum field theory on lattices
81T28 Thermal quantum field theory
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] Y. Aoki, G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature443 (2006) 675 [hep-lat/0611014] [INSPIRE]. · doi:10.1038/nature05120
[2] A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, arXiv:1111.1710 [INSPIRE]. · Zbl 1502.65042
[3] S. Jeon and V. Koch, Charged particle ratio fluctuation as a signal for QGP, Phys. Rev. Lett.85 (2000) 2076 [hep-ph/0003168] [INSPIRE]. · doi:10.1103/PhysRevLett.85.2076
[4] M. Asakawa, U.W. Heinz and B. Müller, Fluctuation probes of quark deconfinement, Phys. Rev. Lett.85 (2000) 2072 [hep-ph/0003169] [INSPIRE]. · doi:10.1103/PhysRevLett.85.2072
[5] S.A. Gottlieb, W. Liu, D. Toussaint, R. Renken and R. Sugar, The quark number susceptibility of high temperature QCD, Phys. Rev. Lett.59 (1987) 2247 [INSPIRE]. · doi:10.1103/PhysRevLett.59.2247
[6] S.A. Gottlieb, W. Liu, D. Toussaint, R. Renken and R. Sugar, Fermion number susceptibility in lattice gauge theory, Phys. Rev.D 38 (1988) 2888.
[7] R. Gavai, J. Potvin and S. Sanielevici, Quark number susceptibility in quenched quantum chromodynamics, Phys. Rev.D 40 (1989) 2743 [INSPIRE].
[8] L.D. McLerran, A chiral symmetry order parameter, the lattice and nucleosynthesis, Phys. Rev.D 36 (1987) 3291 [INSPIRE].
[9] R. Dashen, S.-K. Ma and H.J. Bernstein, S matrix formulation of statistical mechanics, Phys. Rev.187 (1969) 345 [INSPIRE]. · Zbl 0186.28601 · doi:10.1103/PhysRev.187.345
[10] R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons, Nucl. Phys.A 546 (1992) 718 [INSPIRE].
[11] F. Karsch, K. Redlich and A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, Eur. Phys. J.C 29 (2003) 549 [hep-ph/0303108] [INSPIRE]. · Zbl 1099.81564 · doi:10.1140/epjc/s2003-01228-y
[12] F. Karsch, K. Redlich and A. Tawfik, Thermodynamics at nonzero baryon number density: a comparison of lattice and hadron resonance gas model calculations, Phys. Lett.B 571 (2003) 67 [hep-ph/0306208] [INSPIRE]. · Zbl 1094.81568
[13] A. Tawfik, QCD phase diagram: a comparison of lattice and hadron resonance gas model calculations, Phys. Rev.D 71 (2005) 054502 [hep-ph/0412336] [INSPIRE].
[14] J. Blaizot, E. Iancu and A. Rebhan, Quark number susceptibilities from HTL resummed thermodynamics, Phys. Lett.B 523 (2001) 143 [hep-ph/0110369] [INSPIRE].
[15] C. Ratti, R. Bellwied, M. Cristoforetti and M. Barbaro, Are there hadronic bound states above the QCD transition temperature?, arXiv:1109.6243 [INSPIRE].
[16] V. Koch, A. Majumder and J. Randrup, Baryon-strangeness correlations: a diagnostic of strongly interacting matter, Phys. Rev. Lett.95 (2005) 182301 [nucl-th/0505052] [INSPIRE]. · doi:10.1103/PhysRevLett.95.182301
[17] R.V. Gavai, S. Gupta and P. Majumdar, Susceptibilities and screening masses in two flavor QCD, Phys. Rev.D 65 (2002) 054506 [hep-lat/0110032] [INSPIRE].
[18] C. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev.D 66 (2002) 074507 [hep-lat/0204010] [INSPIRE].
[19] C. Allton et al., The equation of state for two flavor QCD at nonzero chemical potential, Phys. Rev.D 68 (2003) 014507 [hep-lat/0305007] [INSPIRE].
[20] C. Allton, et al., Thermodynamics of two flavor QCD to sixth order in quark chemical potential, Phys. Rev.D 71 (2005) 054508 [hep-lat/0501030] [INSPIRE].
[21] R. Gavai and S. Gupta, Simple patterns for non-linear susceptibilities near Tc, Phys. Rev.D 72 (2005) 054006 [hep-lat/0507023] [INSPIRE].
[22] S. Ejiri, F. Karsch and K. Redlich, Hadronic fluctuations at the QCD phase transition, Phys. Lett.B 633 (2006) 275 [hep-ph/0509051] [INSPIRE].
[23] R. Gavai and S. Gupta, Fluctuations, strangeness and quasi-quarks in heavy-ion collisions from lattice QCD, Phys. Rev.D 73 (2006) 014004 [hep-lat/0510044] [INSPIRE].
[24] M. Cheng et al., Baryon number, strangeness and electric charge fluctuations in QCD at high temperature, Phys. Rev.D 79 (2009) 074505 [arXiv:0811.1006] [INSPIRE].
[25] A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev.D 80 (2009) 014504 [arXiv:0903.4379] [INSPIRE].
[26] Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any Tcmystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP09 (2010) 073 [arXiv:1005.3508] [INSPIRE]. · Zbl 1291.81382 · doi:10.1007/JHEP09(2010)073
[27] Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett.B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].
[28] Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP06 (2009) 088 [arXiv:0903.4155] [INSPIRE]. · doi:10.1088/1126-6708/2009/06/088
[29] Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The equation of state in lattice QCD: with physical quark masses towards the continuum limit, JHEP01 (2006) 089 [hep-lat/0510084] [INSPIRE]. · doi:10.1088/1126-6708/2006/01/089
[30] C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev.D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].
[31] HPQCD and UKQCD collaboration, E. Follana et al., Highly improved staggered quarks on the lattice, with applications to charm physics, Phys. Rev.D 75 (2007) 054502 [hep-lat/0610092] [INSPIRE].
[32] Z. Fodor and S. Katz, The phase diagram of quantum chromodynamics, arXiv:0908.3341 [INSPIRE].
[33] S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP11 (2010) 077 [arXiv:1007.2580] [INSPIRE]. · Zbl 1294.81269 · doi:10.1007/JHEP11(2010)077
[34] S. Dürr et al., Ab-Initio determination of light hadron masses, Science322 (2008) 1224 [arXiv:0906.3599] [INSPIRE]. · doi:10.1126/science.1163233
[35] S. Dürr et al., Lattice QCD at the physical point: simulation and analysis details, JHEP08 (2011) 148 [arXiv:1011.2711] [INSPIRE]. · Zbl 1298.81381 · doi:10.1007/JHEP08(2011)148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.