×

Bubble stabilized discontinuous Galerkin methods on conforming and non-conforming meshes. (English) Zbl 1261.65114

Authors’ abstract: The aim of this paper is to discuss the properties of the bubble stabilized discontinuous Galerkin method with respect to mesh geometry. First we show that on certain non-conforming meshes the bubble stabilized discontinuous Galerkin method allows for hanging nodes/edges. Then we consider the case of conforming meshes and present a post-processing algorithm based on the Crouzeix-Raviart method to obtain the bubble stabilized discontinuous Galerkin (BSDG) method. Although finally the post-processed solution does not coincide with the BSDG-solution in general, they satisfy the same (approximation) properties and are close to each other. Moreover, the post-processed solution has continuous flux over the edges.
Reviewer: Ali Filiz (Aydin)

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

References:

[1] Antonietti, P.F., Brezzi, F., Marini, L.D.: Bubble stabilization of discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 198(21–26), 1651–1659 (2009) · Zbl 1227.65110 · doi:10.1016/j.cma.2008.12.033
[2] Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982) · Zbl 0482.65060 · doi:10.1137/0719052
[3] Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31(137), 45–59 (1977) · Zbl 0364.65085 · doi:10.1090/S0025-5718-1977-0431742-5
[4] Baumann, C.E., Oden, J.T.: A discontinuous hp-finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999) · Zbl 0924.76051 · doi:10.1016/S0045-7825(98)00359-4
[5] Brezzi, F., Manzini, G., Marini, L.D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16(4), 365–378 (2000) · Zbl 0957.65099 · doi:10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
[6] Brezzi, F., Marini, L.D.: Bubble stabilization of discontinuous Galerkin methods. In: Advances in Numerical Mathematics. In Proc. International Conference on the Occasion of the 60th birthday of Y.A. Kuznetsov, pp. 25–36. (2006)
[7] Burman, E., Stamm, B.: Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems. Numer. Math. 116(2), 213–241 (2008) · Zbl 1207.65135 · doi:10.1007/s00211-010-0304-9
[8] Burman, E., Stamm, B.: Low order discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(1), 508–533 (2008) · Zbl 1190.65170 · doi:10.1137/070685105
[9] Burman, E., Stamm, B.: Symmetric and non-symmetric discontinuous Galerkin methods stabilized using bubble enrichment. C. R. Math. Acad. Sci. Paris 346(1-2), 103–106 (2008) · Zbl 1133.65096 · doi:10.1016/j.crma.2007.11.016
[10] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, vol. 40. Springer, Berlin (2002) · Zbl 0999.65129
[11] Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[12] de Dios, B.A., Zikatanov, L.: Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40(1-3), 4–36 (2009) · Zbl 1203.65242 · doi:10.1007/s10915-009-9293-1
[13] Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Lecture Notes in Phys., vol. 58, pp. 207–216 (1976)
[14] Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46(173), 1–26 (1986) · Zbl 0618.65105 · doi:10.1090/S0025-5718-1986-0815828-4
[15] Larson, M.G., Niklasson, A.J.: Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: stability and energy error estimates. SIAM J. Numer. Anal. 42(1), 252–264 (2004) · Zbl 1078.65106 · doi:10.1137/S0036142902413160
[16] Lesaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. Mathematical aspects of finite elements in partial differential equations. In: Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, 1974, pp. 89–123. Academic Press, New York (1974). Publication No. 33, Math. Res. Center. Univ. of Wisconsin–Madison, 65N30 (82.65 82.35)
[17] Marini, L.D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22(3), 493–496 (1985) · Zbl 0573.65082 · doi:10.1137/0722029
[18] Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hamb. 36, 9–15 (1971) · Zbl 0229.65079 · doi:10.1007/BF02995904
[19] Oden, J.T., Babuska, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146(2), 491–519 (1998) · Zbl 0926.65109 · doi:10.1006/jcph.1998.6032
[20] Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479 (1973)
[21] Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001) (electronic) · Zbl 1010.65045 · doi:10.1137/S003614290037174X
[22] Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978) · Zbl 0384.65058 · doi:10.1137/0715010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.