×

Generalized symmetric spaces, Yu. P. Solovyov’s formula, and the generalized Hermitian geometry. (English. Russian original) Zbl 1188.53048

J. Math. Sci., New York 159, No. 6, 777-789 (2009); translation from Fundam. Prikl. Mat. 13, No. 8, 43-60 (2007).
Homogeneous \(\Phi \)-spaces, i.e. homogeneous spaces generated by automorphisms \(\Phi \) of Lie groups, are important objects of differential geometry. They include homogeneous symmetric spaces \((\Phi ^2=\text{Id})\) and homogeneous \(k\)-symmetric spaces \((\Phi ^k= \text{Id})\). There exist homogeneous \(\Phi \)-spaces that are not reductive. Hence, the regular \(\Phi \)-spaces which are contained in the class of reductive spaces play a fundamental role. A distinguishing feature of regular \(\Phi \)-spaces is that each such space has a natural associated object, the commutative algebra \(\mathcal A( \theta )\) of canonical affinor structures. This algebra contains almost complex structures \(J\) \((J^2=-1)\), almost product structures P \((P^2=1)\), \(f\)-structures of K. Yano \((f^3+ f=0)\) and \(h\)-structures \((h^3-h=0)\).
In sections 2–4 the author collects basic notions and results of homogeneous regular \(\Phi \)-spaces, specifically, homogeneous \(k\)-symmetric spaces. Yu. P. Solovyov’s stimulating influence on this direction during its first stage is illustrated. Moreover, a precise description of all canonical structures of classical type on homogeneous \(k\)-symmetric spaces is given.
In sections 5 and 6 the author deals with special canonical \(f\)-structures on regular \(\Phi \)-spaces. Using special canonical \(f\)-structures on homogeneous \(k\)-symmetric spaces with \(k=4n\), \(n \geq 1\), the author presents a new collection of invariant Hermitian \(f\)-structures.

MSC:

53C30 Differential geometry of homogeneous manifolds
53C35 Differential geometry of symmetric spaces
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)

References:

[1] E. Abbena and S. Garbiero, ”Almost Hermitian homogeneous manifolds and Lie groups,” Nihonkai Math. J., 4, 1–15 (1993). · Zbl 0957.53506
[2] V. V. Balashchenko, Riemannian Geometry of Canonical Structures on Regular {\(\Phi\)}-Spaces, Preprint No. 174/1994, Fakultät für Mathematik der Ruhr-Universität Bochum (1994). · Zbl 0831.53030
[3] V. V. Balashchenko, ”Canonical f-structures of hyperbolic type on regular {\(\Phi\)}-spaces,” Russ. Math. Surv., 53, No. 4, 861–863 (1998). · Zbl 0979.53030 · doi:10.1070/RM1998v053n04ABEH000060
[4] V. V. Balashchenko, ”Naturally reductive Killing f-manifolds,” Russ. Math. Surv., 54, No. 3, 623–625 (1999). · Zbl 0977.53025 · doi:10.1070/RM1999v054n03ABEH000155
[5] V. V. Balashchenko, ”Extending an idea of A. Gray: Homogeneous k-symmetric spaces and generalized Hermitian geometry,” in: Int. Congr. on Differential Geometry in Memory of Alfred Gray, September 18–23, 2000, Bilbao (Spain), Abstracts, pp. 5–7.
[6] V. V. Balashchenko, ”Homogeneous Hermitian f-manifolds,” Russ. Math. Surv., 56, No. 3, 575–577 (2001). · Zbl 1038.53068 · doi:10.1070/RM2001v056n03ABEH000401
[7] V. V. Balashchenko, ”Homogeneous nearly Kähler f-manifolds,” Dokl. Math., 63, No. 1, 56–58 (2001). · Zbl 1044.53037
[8] V. V. Balashchenko, ”Invariant nearly Kähler f-structures on homogeneous spaces,” in: M. Fernández et al. (eds.), Global Differential Geometry: The Mathematical Legacy of Alfred Gray. Proc. of the Int. Congr. on Differential Geometry Held in Memory of Prof. Alfred Gray, Bilbao, Spain, September 18–23, 2000, Amer. Math. Soc., Providence (2001), Contemp. Math., Vol. 288, pp. 263–267.
[9] V. V. Balashchenko, Invariant Nearly Kähler f-Structures on Homogeneous Spaces, SFB 288 Preprint No. 499, Berlin (2001). · Zbl 1008.53030
[10] V. V. Balashchenko, ”The algebra of canonical affinor structures and classes of regular {\(\Phi\)}-spaces,” Dokl. Math., 66, No. 1, 111–114 (2002). · Zbl 1146.53302
[11] V. V. Balashchenko, ”Invariant structures generated by Lie group automorphisms on homogeneous spaces,” in: N. Bokan, M. Djoric, A. T. Fomenko, Z. Rakic, and J. Wess, eds., Proc. of the Workshop ”Contemporary Geometry and Related Topics” (Belgrade, Yugoslavia, 15–21 May, 2002), World Scientific (2004), pp. 1–32.
[12] V. V. Balashchenko and Yu. D. Churbanov, ”Invariant structures on homogeneous {\(\Phi\)}-spaces of order 5,” Russ. Math. Surv., 45, No. 1, 195–197 (1990). · Zbl 0726.53025 · doi:10.1070/RM1990v045n01ABEH002308
[13] V. V. Balashchenko and O. V. Dashevich, ”Geometry of canonical structures on homogeneous {\(\Phi\)}-spaces of order 4,” Russ. Math. Surv., 49, No. 4, 149–150 (1994). · Zbl 0831.53030 · doi:10.1070/RM1994v049n04ABEH002394
[14] V. V. Balashchenko and N. A. Stepanov, ”Canonical affinor structures on regular {\(\Phi\)}-spaces,” Russ. Math. Surv., 46, No. 1, 247–248 (1991). · Zbl 0757.53014 · doi:10.1070/RM1991v046n01ABEH002721
[15] V. V. Balashchenko and N. A. Stepanov, ”Canonical affinor structures of classical type on regular {\(\Phi\)}-spaces,” Sb. Math., 186, No. 11, 1551–1580 (1995). · Zbl 0872.53025 · doi:10.1070/SM1995v186n11ABEH000083
[16] V. V. Balashchenko and D. V. Vylegzhanin, ”Generalized Hermitian geometry on homogeneous {\(\Phi\)}-spaces of finite order,” Russ. Math., No. 10, 33–44 (2004). · Zbl 1105.53027
[17] H. Baum, T. Friedrich, R. Grunewald, and I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Teubner-Texte zur Mathematik, Vol. 124, Teubner, Stuttgart (1991). · Zbl 0734.53003
[18] Yu. D. Churbanov, ”On some classes of homogeneous {\(\Phi\)}-spaces of order 5,” Russ. Math., No. 2, 88–90 (1992). · Zbl 0806.53053
[19] Yu. D. Churbanov, ”Canonical f-structures of homogeneous {\(\Phi\)}-spaces of order 5,” Vestn. BGU. Ser. 1 Fiz., Mat., Mekh., No. 1, 51–54 (1994). · Zbl 0885.53051
[20] Yu. D. Churbanov, ”The geometry of homogeneous {\(\Phi\)}-spaces of order 5,” Russ. Math., No. 5, 68–78 (2002). · Zbl 1103.53026
[21] A. S. Fedenko, Spaces with Symmetries [in Russian], Belarusian State University, Minsk (1977). · Zbl 0463.53034
[22] S. Garbiero and L. Vanhecke, ”A characterization of locally 3-symmetric spaces,” Riv. Mat. Univ. Parma (5), 2, 331–335 (1993). · Zbl 0832.53040
[23] A. Gray, ”Nearly Kähler manifolds,” J. Differential Geom., 4, No. 3, 283–309 (1970). · Zbl 0201.54401
[24] A. Gray, ”Riemannian manifolds with geodesic symmetries of order 3,” J. Differential Geom., 7, No. 3-4, 343–369 (1972). · Zbl 0275.53026
[25] A. Gray, ”Homogeneous almost Hermitian manifolds,” in: Proc. of the Conf. on Differential Geometry on Homogeneous Spaces, Turin, Italy, 1983, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983), pp. 17–58. · Zbl 0627.53039
[26] A. Gray and L. M. Hervella, ”The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Mat. Pura Appl., 123, No. 4, 35–58 (1980). · Zbl 0444.53032 · doi:10.1007/BF01796539
[27] A. S. Gritsans, ”On the geometry of Killing f-manifolds,” Russ. Math. Surv., 45, No. 4, 168–169 (1990). · Zbl 0716.53034 · doi:10.1070/RM1990v045n04ABEH002365
[28] A. S. Gritsans, ”On the structure of Killing f-manifolds,” Russ. Math., 36, No. 6, 46–54 (1992). · Zbl 0780.53019
[29] R. Grunewald, ”Six-dimensional Riemannian manifolds with a real Killing spinor,” Ann. Global Anal. Geom., 8, No. 1, 43–59 (1990). · Zbl 0704.53050 · doi:10.1007/BF00055017
[30] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York (1978). · Zbl 0451.53038
[31] J. A. Jimenez, ”Riemannian 4-symmetric spaces,” Trans. Amer. Math. Soc., 306, No. 2, 715–734 (1988). · Zbl 0647.53039 · doi:10.2307/2000819
[32] J. A. Jimenez, ”Existence of Hermitian n-symmetric spaces and of non-commutative naturally reductive spaces,” Math. Z., 196, No. 2, 133–139 (1987). · Zbl 0612.53030 · doi:10.1007/BF01163651
[33] I. Kath, ”Pseudo-Riemannian T-duals of compact Riemannian homogeneous spaces,” Transform. Groups, 5, No. 2, 157–179 (2000). · Zbl 0965.53037 · doi:10.1007/BF01236467
[34] V. F. Kirichenko, ”K-spaces of constant type,” Sib. Math. J., 17, 220–225 (1976). · Zbl 0357.53014 · doi:10.1007/BF00967568
[35] V. F. Kirichenko, ”On the geometry of homogeneous K-spaces,” Math. Notes, 30, 779–785 (1981). · Zbl 0489.53047
[36] V. F. Kirichenko, ”Sur la geometrie des varietes approximativement cosymplectiques,” C. R. Acad. Sci. Paris, Sér. 1, 295, No. 12, 673–676 (1982). · Zbl 0519.53032
[37] V. F. Kirichenko, ”Hermitian-homogeneous generalized almost Hermitian manifolds,” Sov. Math. Dokl., 30, 267–271 (1984). · Zbl 0586.53011
[38] V. F. Kirichenko, ”Quasi-homogeneous manifolds and generalized almost Hermitian structures,” Math. USSR Izv., 23, 473–486 (1984). · Zbl 0556.53023 · doi:10.1070/IM1984v023n03ABEH001781
[39] V. F. Kirichenko, ”Methods of generalized Hermitian geometry in the theory of almost contact manifolds,” J. Sov. Math., 42, No. 5, 1885–1919 (1988). · Zbl 0715.53033 · doi:10.1007/BF01094419
[40] V. F. Kirichenko, ”Generalized quasi-Kählerian manifolds and axioms of CR-submanifolds in generalized Hermitian geometry. I,” Geom. Dedicata, 51, 75–104 (1994). · Zbl 0817.53016 · doi:10.1007/BF01264102
[41] V. F. Kirichenko, Differential-Geometric Structures on Manifolds [in Russian], MPGU, Moscow (2003).
[42] V. F. Kirichenko and L. V. Lipagina, ”Killing f-manifolds of constant type,” Izv. Math., 63, No. 5, 963–981 (1999). · Zbl 0978.53125 · doi:10.1070/IM1999v063n05ABEH000261
[43] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, Interscience–Wiley, New York (1969). · Zbl 0175.48504
[44] O. Kowalski, Generalized Symmetric Spaces, Lect. Notes Math., Vol. 805, Springer, Berlin (1980). · Zbl 0431.53042
[45] S. Lang, Algebra, Addison-Wesley Ser. Math., Addison-Wesley (1965).
[46] A. J. Ledger and L. Vanhecke, ”On a theorem of Kiričenko relating to 3-symmetric spaces,” Riv. Mat. Univ. Parma (4), 13, 367–372 (1987). · Zbl 0678.53041
[47] L. V. Lipagina, ”On the structure of the algebra of invariant affinor structures on the sphere S 5,” Russ. Math., 41, No. 9, 15–18 (1997). · Zbl 0905.53022
[48] S. Salamon, ”Harmonic and holomorphic maps,” in: Geometry Seminar ”Luigi Bianchi” II – 1984, Lect. Notes Math., Vol. 1164, Springer, Berlin (1985), pp. 161–224.
[49] S. M. Salamon, ”Minimal surfaces and symmetric spaces,” in: Differential Geometry. Proc. 5th Int. Colloq., Santiago de Compostela/Spain, 1984, Res. Notes Math., 131, 103–114 (1985).
[50] T. Sato, ”Riemannian 3-symmetric spaces and homogeneous K-spaces,” Mem. Fac. Technology, Kanazawa Univ., 12, No. 2, 137–143 (1979).
[51] K. Sekigawa and J. Watanabe, ”On some compact Riemannian 3-symmetric spaces,” Sci. Rep. Niigata Univ. Ser. A, No. 19, 1–17 (1983). · Zbl 0521.53049
[52] K. Sekigawa and H. Yoshida, ”Riemannian 3-symmetric spaces defined by some outer automorphisms of compact Lie groups,” Tensor, 40, No. 3, 261–268 (1983). · Zbl 0569.53018
[53] K. D. Singh and R. Singh, ”Some f(3, {\(\epsilon\)})-structure manifolds,” Demonstratio Math., 10, No. 3–4, 637–645 (1977). · Zbl 0371.53030
[54] N. A. Stepanov, ”Basic facts of the theory of {\(\phi\)}-spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 88–95 (1967).
[55] N. A. Stepanov, ”Homogeneous 3-cyclic spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 65–74 (1967). · Zbl 0162.25601
[56] R. E. Stong, ”The rank of an f-structure,” Kōdai Math. Sem. Rep., 29, 207–209 (1977). · Zbl 0409.53028 · doi:10.2996/kmj/1138833583
[57] F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lect. Note Ser., Vol. 83, Cambridge Univ. Press (1983). · Zbl 0509.53043
[58] J. A. Wolf and A. Gray, ”Homogeneous spaces defined by Lie group automorphisms,” J. Differential Geom., 2, No. 1–2, 77–159 (1968). · Zbl 0182.24702
[59] K. Yano, ”On a structure defined by a tensor field f of type (1, 1) satisfying f 3 + f = 0,” Tensor, 14, 99–109 (1963). · Zbl 0122.40705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.