×

Boundary crossing probabilities for the cumulative sample mean. (English) Zbl 1411.60048

Summary: We develop a new measure of reliability for the mean behavior of a process by calculating the probability the cumulative sample mean will stay within a given distance from the true mean over a period of time. This probability is derived using boundary-crossing properties of Brownian bridges. We derive finite sample results for independent and identically distributed normal data, limiting results for data meeting a functional central limit theorem, and draw parallels to standard normal confidence intervals. We deliver numerical results for i.i.d., dependent, and queueing processes.

MSC:

60F17 Functional limit theorems; invariance principles
60K10 Applications of renewal theory (reliability, demand theory, etc.)
62E20 Asymptotic distribution theory in statistics
62G15 Nonparametric tolerance and confidence regions
Full Text: DOI

References:

[1] 1.AbundoM. (2002). Some conditional crossing results of Brownian motion over a piecewise-linear boundary. Statistics & Probability Letters58(2): 131-145.10.1016/S0167-7152(02)00108-6 · Zbl 1014.60078 · doi:10.1016/S0167-7152(02)00108-6
[2] 2.AlexopoulosC. (2006). A comprehensive review of methods for simulation output analysis. In L.P.Perrone, F.P.Wieland, J.Liu, B.G.Lawson, D.M.Nicol, & R.M.Fujimoto (eds.), Proceedings of the 2006 Winter Simulation Conference. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc., pp. 168-178.
[3] 3.AtkinsonM.P. & SinghamD.I. (2015). Multidimensional hitting time results for Brownian bridges with moving hyperplanar boundaries. Statistics and Probability Letters100: 85-92.10.1016/j.spl.2015.02.006 · Zbl 1328.60187 · doi:10.1016/j.spl.2015.02.006
[4] 4.BaturD., GoldsmanD., & KimS.-H. (2009). An improved standardized time series Durbin-Watson variance estimator for steady-state simulation. Operations Research Letters37(4): 285-289.10.1016/j.orl.2009.01.014 · Zbl 1167.62456 · doi:10.1016/j.orl.2009.01.014
[5] 5.BillingsleyP. (1968). Convergence of probability measures. New York: Wiley. · Zbl 0172.21201
[6] 6.DoobJ.L. (1949). Heuristic approach to the Kolmogorov-Smirnov theorems. The Annals of Mathematical Statistics20(3): 393-403.10.1214/aoms/1177729991 · Zbl 0035.08901 · doi:10.1214/aoms/1177729991
[7] 7.FuJ.C. & WuT.-L. (2010). Linear and nonlinear boundary crossing probabilities for Brownian motion and related processes. Journal of Applied Probability47(4): 1058-1071.10.1239/jap/1294170519S0021900200007361 · Zbl 1208.60080 · doi:10.1239/jap/1294170519
[8] 8.GlynnP.W. & IglehartD.L. (1990). Simulation output analysis using standardized time series. Mathematics of Operations Research15(1): 1-16.10.1287/moor.15.1.1 · Zbl 0704.65110 · doi:10.1287/moor.15.1.1
[9] 9.GoldsmanD., MeketonM., & SchrubenL. (1990). Properties of standardized time series weighted area variance estimators. Management Science36(5): 602-612.10.1287/mnsc.36.5.602 · Zbl 0716.62038 · doi:10.1287/mnsc.36.5.602
[10] 10.KaratzasI. & ShreveS. (1998). Brownian motion and stochastic calculus. New York, NY: Springer.
[11] 11.KlenkeA. (2013). Probability theory: a comprehensive course. London: Springer Science & Business Media. · Zbl 1295.60001
[12] 12.LercheH.R. & SiegmundD. (1987). Approximate Exit Probabilities for a Brownian Bridge on a Short Time Interval, and Applications. Technical report, Stanford University. · Zbl 0681.60072
[13] 13.NagaevS.V. (1970). On the speed of convergence in a boundary problem. I. Theory of Probability & Its Applications15(2): 163-186.10.1137/1115026 · Zbl 0222.60015 · doi:10.1137/1115026
[14] 14.ScheikeT.H. (1992). A boundary-crossing result for Brownian motion. Journal of Applied Probability29(2): 448-453.10.2307/3214581S0021900200043199 · Zbl 0806.60065 · doi:10.2307/3214581
[15] 15.SchrubenL. (1983). Confidence interval estimation using standardized time series. Operations Research31(6): 1090-1108.10.1287/opre.31.6.1090 · Zbl 0532.62067 · doi:10.1287/opre.31.6.1090
[16] 16.SinghamD.I. & AtkinsonM.P. (2015). Construction of Cumulative Mean Bounds for Simulation Output Analysis. Technical Report NPS-OR-15-004, Naval Postgraduate School.
[17] 17.TafazzoliA. & WilsonJ.R. (2010). Skart: a skewness-and autoregression-adjusted batch-means procedure for simulation analysis. IIE Transactions43(2): 110-128.10.1080/0740817X.2010.504688 · doi:10.1080/0740817X.2010.504688
[18] 18.WhittW. (2002). Stochastic-process limits: an introduction to stochastic-process limits and their application to queues. New York, NY: Springer Science & Business Media. · Zbl 0993.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.