×

Irreducibility of random polynomials: general measures. (English) Zbl 07724111

Authors’ abstract: “Let \(\mu\) be a probability measure on \(\mathbb{Z}\) that is not a Dirac mass and that has finite support. We prove that if the coefficients of a monic polynomial \(f(x) \in \mathbb{Z}[x]\) of degree \(n\) are chosen independently at random according to \(\mu\) while ensuring that \(f(0) \neq 0\), then there is a positive constant \(\theta = \theta (\mu)\) such that \(f(x)\) has no divisors of degree \(\leq \theta n\) with probability that tends to 1 as \(n \to \infty\).
Furthermore, in certain cases, we show that a random polynomial \(f(x)\) with \(f(0) \neq 0\) is irreducible with probability tending to 1 as \(n \to \infty\). In particular, this is the case if \(\mu\) is the uniform measure on a set of at least 35 consecutive integers, or on a subset of \([-H,H] \cap \mathbb{Z}\) of cardinality \(\geq H^{4/5}(\log H)^2\) with \(H\) sufficiently large. In addition, in all of these settings, we show that the Galois group of \(f(x)\) is either \(\mathcal{A}_n\) or \(\mathcal{S}_n\) with high probability.
Finally, when \(\mu\) is the uniform measure on a finite arithmetic progression of at least two elements, we prove a random polynomial \(f(x)\) as above is irreducible with probability \(\geq \delta\) for some constant \(\delta =\delta (\mu)>0\). In fact, if the arithmetic progression has step 1, we prove the stronger result that the Galois group of \(f(x)\) is \(\mathcal{A}_n\) or \(\mathcal{S}_n\) with probability \(\geq \delta\).”
Reviewer’s comments: This eighty-pages-long paper is devided in four parts (besides the acknowledgements and the references). In Part I one finds the statements of the results and the outline of the proofs thereof (already thirty-one pages on the whole). Part II (ten pages) contains known and new results on approximate distribution, while Part III (twenty-one pages) handles many criteria of sets of polynomials, in comparison to their irreducibility or not. In Part IV, corresponding structure of the Galois groups, it is discussed with emphasis the so-called Łuczak-Pyber style theorem (twelve pages).
The paper does contain an immense lot of knowledge, very recent and not-so-very recent; moreover the reader will observe, that the printing of each page of the paper does contain about \(35\sim 40\) lines besides the normal “white spaces”! Now, let us give the titles of the subdivisions of the parts, in order to provide an idea of the contents.
I: Introduction; Outline of the proofs (Ruling out factors of small degree; Ruling out factors of large degree; From approximate equidistribution to irreducibility; Controlling the joint distribution of \((A_p)_{p\in P}\); A master theorem; From irreducibility to Galois groups; Summary (reviewer’s remark: here the authors print a “Leitfaden”, how the propositions and theorems do depend on each other)); Deduction of Theorems 1 to 6 from Theorems 7 and 8 (reviewer’s remark: It takes fifteen pages to do so, directly yielding the hart of the paper).
II: The Fourier transform on \(\mathbb{F}_P[T]\); \(L^\infty\) bounds; \(L^1\) bounds; Proof of Proposition 2.3.
III: Ruling out factors of small degree; An upper bound sieve; Anatomy of polynomials (thirteen pages in all, perhaps the most intricate and complex mathematics in its presentation (reviewer’s remark), highly recommended as such); Proof of Proposition 2.2.
IV: Galois theory (The factorization type of \(A_p\); Lifting the Frobenius automorphism; Reduction of Proposition 2.4 to two lemmas. A Łuczak-Pyber style theorem (The anatomy of a typical partition; Group theory)).
Let me finish with the following observations. The authors did succeed very well in presenting all the complications in the mathematics, in an excellent technical and didactic way. It must have costed them years, I guess, to conceive all that, let alone the typing of it.

MSC:

11R09 Polynomials (irreducibility, etc.)
12E05 Polynomials in general fields (irreducibility, etc.)
11N25 Distribution of integers with specified multiplicative constraints
11T55 Arithmetic theory of polynomial rings over finite fields
05A05 Permutations, words, matrices
20B30 Symmetric groups
11-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to number theory
11C08 Polynomials in number theory
11N05 Distribution of primes
11N36 Applications of sieve methods
11A63 Radix representation; digital problems
11R32 Galois theory
11N35 Sieves
11N13 Primes in congruence classes
11N37 Asymptotic results on arithmetic functions
11T06 Polynomials over finite fields
00A05 Mathematics in general
05E15 Combinatorial aspects of groups and algebras (MSC2010)
11G10 Abelian varieties of dimension \(> 1\)
11G35 Varieties over global fields

Citations:

Zbl 0817.20002

References:

[1] Bary-Soroker, L.; Kozma, G., Irreducible polynomials of bounded height, Duke Math. J., 169, 4, 579-598 (2020) · Zbl 1447.11112 · doi:10.1215/00127094-2019-0047
[2] Bhargava, M.: Galois groups of random integer polynomials and van der Waerden’s Conjecture. Available at: arXiv:2111.06507 · Zbl 1518.11079
[3] Breuillard, E.; Varjú, P. P., Irreducibility of random polynomials of large degree, Acta Math., 223, 2, 195-249 (2019) · Zbl 1459.11079 · doi:10.4310/ACTA.2019.v223.n2.a1
[4] Chow, S.; Dietmann, R., Enumerative Galois theory for cubics and quartics, Adv. Math., 372 (2020) · Zbl 1470.11291 · doi:10.1016/j.aim.2020.107282
[5] Dartyge, C.; Mauduit, C., Nombres presque premiers dont l’écriture en base \(r\) ne comporte pas certains chiffres, J. Number Theory, 81, 2, 270-291 (2000) · Zbl 0957.11039 · doi:10.1006/jnth.1999.2458
[6] Dartyge, C.; Mauduit, C., Ensembles de densité nulle contenant des entiers possédant au plus deux facteurs premiers, J. Number Theory, 91, 2, 230-255 (2001) · Zbl 0988.11042 · doi:10.1006/jnth.2001.2681
[7] Dietmann, R., On the distribution of Galois groups, Mathematika, 58, 1, 35-44 (2012) · Zbl 1276.11184 · doi:10.1112/S0025579311002105
[8] Dobrowolski, E., On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith., 34, 4, 391-401 (1979) · Zbl 0416.12001 · doi:10.4064/aa-34-4-391-401
[9] Eberhard, S.; Ford, K.; Green, B., Permutations fixing a \(k\)-set, Int. Math. Res. Not., 21, 6713-6731 (2016) · Zbl 1404.05004 · doi:10.1093/imrn/rnv371
[10] Eberhard, S., Ford, K., Koukoulopoulos, D.: Permutations contained in transitive subgroups. Discrete Anal. 12 (2016), 34 pp. Available at: discreteanalysisjournal/849 · Zbl 1346.05005
[11] Erdős, P., Some remarks on number theory, Riveon Lematematika, 9, 45-48 (1955)
[12] Erdős, P., An asymptotic inequality in the theory of numbers, Vestn. Leningr. Univ., 15, 13, 41-49 (1960) · Zbl 0104.26804
[13] Erdős, P.; Mauduit, C.; Sárközy, A., On arithmetic properties of integers with missing digits I: distribution in residue classes, J. Number Theory, 70, 99-120 (1998) · Zbl 0923.11024 · doi:10.1006/jnth.1998.2229
[14] Ford, K., Integers with a divisor in \((y,2y]\). Anatomy of integers, CRM Proc. Lecture Notes, 65-80 (2008), Providence: Am. Math. Soc., Providence · Zbl 1175.11053
[15] Friedlander, J.; Iwaniec, H., Opera de Cribro (2010), Providence: Am. Math. Soc., Providence · Zbl 1226.11099
[16] Gallagher, P. X., On the distribution of primes in short intervals, Mathematika, 23, 1, 4-9 (1976) · Zbl 0346.10024 · doi:10.1112/S0025579300016442
[17] Granville, A., Bounding the coefficients of a divisor of a given polynomial, Monatshefte Math., 109, 4, 271-277 (1990) · Zbl 0713.12001 · doi:10.1007/BF01320692
[18] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (2008), Oxford: Oxford University Press, Oxford · Zbl 1159.11001
[19] Kolmogorov, A., Sur les propriétés des fonctions de concentrations de M. P. Lévy, Ann. Inst. Henri Poincaré D, 16, 27-34 (1958) · Zbl 0105.11804
[20] Konyagin, S. V., On the number of irreducible polynomials with 0, 1 coefficients, Acta Arith., 88, 4, 333-350 (1999) · Zbl 0931.11007 · doi:10.4064/aa-88-4-333-350
[21] Konyagin, S. V., Arithmetic properties of integers with missing digits: distribution in residue classes, Period. Math. Hung., 42, 1-2, 145-162 (2001) · Zbl 0980.11006 · doi:10.1023/A:1015256809636
[22] Koukoulopoulos, D., The Distribution of Prime Numbers (2019), Providence: Am. Math. Soc., Providence · Zbl 1468.11001
[23] Łuczak, T.; Pyber, L., On random generation of the symmetric group, Comb. Probab. Comput., 2, 4, 505-512 (1993) · Zbl 0817.20002 · doi:10.1017/S0963548300000869
[24] Marcus, D. A., Number Fields (2018), Cham: Springer, Cham · Zbl 1411.11003 · doi:10.1007/978-3-319-90233-3
[25] Maynard, J.: Primes and polynomials with restricted digits. Preprint, 18 p. (2015). Available at: arXiv:1510.07711 · Zbl 1506.11118
[26] Maynard, J., Primes with restricted digits, Invent. Math., 217, 127-218 (2019) · Zbl 1477.11167 · doi:10.1007/s00222-019-00865-6
[27] Meisner, P.: Erdős’ Multiplication Table Problem for Function Fields and Symmetric Groups. Preprint, 19 p. (2018). Available at: arXiv:1804.08483
[28] Mignotte, M., An inequality about irreducible factors of integer polynomials, J. Number Theory, 30, 2, 156-166 (1988) · Zbl 0648.12002 · doi:10.1016/0022-314X(88)90014-5
[29] Moses, E.: Irreducible Polynomials with Varying Constraints on Coefficients. M. Sc. thesis (2017). Available at: arXiv:1712.04051
[30] Pemantle, R.; Peres, Y.; Rivin, I., Four random permutations conjugated by an adversary generate \(\mathcal{S}_n\) with high probability, Random Struct. Algorithms, 49, 3, 409-428 (2016) · Zbl 1349.05337 · doi:10.1002/rsa.20632
[31] Porritt, S., Irreducible polynomials over a finite field with restricted coefficients, Can. Math. Bull., 62, 2, 429-439 (2019) · Zbl 1505.11148 · doi:10.4153/CMB-2018-027-x
[32] Pólya, G.; Szegő, G., Problems and Theorems in Analysis (1976), New York: Springer, New York · Zbl 0338.00001 · doi:10.1007/978-1-4757-6292-1
[33] Rogozin, B. A., Об одной оценке функций концентраций [Russian: An estimate of the concentration functions], Teor. Veroâtn. Primen., 6, 1, 103-105 (1961)
[34] Rogozin, B. A., Об увеличении рассеивания сумм независимых случайных величин [Russian: On the increase of dispersion of sums of independent random variables], Teor. Veroâtn. Primen., 6, 1, 106-108 (1961)
[35] Rosen, M., Number Theory in Function Fields (2002), New York: Springer, New York · Zbl 1043.11079
[36] Shiu, P., A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313, 161-170 (1980) · Zbl 0412.10030
[37] Smati, A., Evaluation effective du nombre d’entiers \(n\) tels que \(\varphi (n)\leq x\), Acta Arith., 61, 2, 143-159 (1992) · Zbl 0726.11054 · doi:10.4064/aa-61-2-143-159
[38] Waerden, B. L.v.d., Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt, Monatshefte Math. Phys., 43, 1, 133-147 (1936) · Zbl 0013.38701 · doi:10.1007/BF01707594
[39] Webb, W., Sieve methods for polynomial rings over finite fields, J. Number Theory, 16, 3, 343-355 (1983) · Zbl 0517.10049 · doi:10.1016/0022-314X(83)90062-8
[40] Zarhin, Y., Very simple 2-adic representations and hyperelliptic Jacobians. Dedicated to Yuri I. Manin on the occasion of his 65th birthday, Mosc. Math. J., 2, 403-431 (2002) · Zbl 1082.11039 · doi:10.17323/1609-4514-2002-2-2-403-431
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.