×

Dichotomous Hamiltonians with unbounded entries and solutions of Riccati equations. (English) Zbl 1320.47012

The paper under review is devoted to the investigation of algebraic Riccati equations \[ A^*X + XA + XBX - C =0 \] on a Hilbert space \(H\), where \(A, B\geq 0, C\geq 0\) are unbounded linear operators. The authors prove the existence of nonnegative and nonpositive solutions of the Riccati equation. Conditions for the boundedness and uniqueness of these solutions are established.
The proof is based on a a certain dichotomy property of the associated Hamiltonian \[ \begin{pmatrix} A&B\\ C&-A^* \end{pmatrix} \] and its symmetry with respect to two different indefinite inner products.
Examples involving partial differential operators are included.

MSC:

47A62 Equations involving linear operators, with operator unknowns
47B44 Linear accretive operators, dissipative operators, etc.
47N70 Applications of operator theory in systems, signals, circuits, and control theory

References:

[1] Adamjan V., Langer H., Tretter C.: Existence and uniqueness of contractive solutions of some Riccati equations. J. Funct. Anal., 179(2), 448-473 (2001) · Zbl 0982.47019 · doi:10.1006/jfan.2000.3680
[2] R. A. Adams, J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam, second edition, 2003. · Zbl 1098.46001
[3] N. I. Akhiezer, I. M. Glazman. Theory of Linear Operators in Hilbert Space. Dover Publications Inc., New York, 1993. · Zbl 0874.47001
[4] Arendt W., Bu S.: Sums of bisectorial operators and applications. Integral Equations Operator Theory 52(3), 299-321 (2005) · Zbl 1088.47002 · doi:10.1007/s00020-005-1350-z
[5] Arendt W., Duelli M.: Maximal Lp-regularity for parabolic and elliptic equations on the line. J. Evol. Equ. 6(4), 773-790 (2006) · Zbl 1113.35108 · doi:10.1007/s00028-006-0292-5
[6] T. Y. Azizov, A. Dijksma, I. V. Gridneva. Conditional reducibility of certain unbounded nonnegative Hamiltonian operator functions. Integral Equations Operator Theory, 73(2) (2012), 273-303. · Zbl 1276.47050
[7] T. Y. Azizov, I. S. Iokhvidov. Linear Operators in Spaces With an Indefinite Metric. John Wiley & Sons, Chichester, 1989. · Zbl 0714.47028
[8] H. Bart, I. Gohberg, M. A. Kaashoek. Minimal factorization of matrix and operator functions, volume 1 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1979. · Zbl 0424.47001
[9] Bart H., Gohberg I., Kaashoek M.A.: Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators. J. Funct. Anal. 68(1), 1-42 (1986) · Zbl 0606.47021 · doi:10.1016/0022-1236(86)90055-8
[10] S. Bittanti, A. J. Laub, J. C. Willems, editors. The Riccati equation. Communications and Control Engineering Series. Springer-Verlag, Berlin, 1991. · Zbl 0734.34004
[11] P. Bubák, C. V. M. van der Mee, A. C. M. Ran. Approximation of solutions of Riccati equations. SIAM J. Control Optim., 44(4) (2005), 1419-1435. · Zbl 1139.93016
[12] J.-C. Cuenin, C. Tretter. Spectral perturbations of self-adjoint operators with spectral gaps. Submitted, (2013).
[13] Curtain R.F., Zwart H.J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer, New York (1995) · Zbl 0839.93001 · doi:10.1007/978-1-4612-4224-6
[14] A. Dijksma, H. S. V. de Snoo. Symmetric and selfadjoint relations in Kreĭ n spaces. I. volume 24 of Oper. Theory Adv. Appl., pages 145-166. Birkhäuser, Basel, 1987. · Zbl 0625.47030
[15] K.-J. Engel, R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. Springer, New York, 2000. · Zbl 0952.47036
[16] I. Gohberg, S. Goldberg, M. A. Kaashoek. Classes of linear operators. Vol. I, volume 49 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1990. · Zbl 0745.47002
[17] Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980) · Zbl 0435.47001
[18] V. Kostrykin, K. A. Makarov, A. K. Motovilov. Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach. volume 327 of Contemp. Math., pages 181-198. Amer. Math. Soc., Providence, 2003. · Zbl 1066.47014
[19] M. G. Kreĭn. Introduction to the geometry of indefiniteJ-spaces and to the theory of operators in those spaces. In Second Math. Summer School, Part I (Russian), pages 15-92. Naukova Dumka, Kiev, 1965. English transl. in Amer. Math. Soc. Transl. (2), 93 (1970), 103-176. · Zbl 0206.11906
[20] S. G. Kreĭn. Linear Differential Equations in Banach Space. Amer. Math. Soc., Providence, 1971.
[21] Kuiper C. R., Zwart H. J.: Connections between the algebraic Riccati equation and the Hamiltonian for Riesz-spectral systems. J. Math. Systems Estim. Control 6(4), 1-48 (1996) · Zbl 0876.93047
[22] Lancaster P., Rodman L.: Algebraic Riccati Equations. Oxford University Press, Oxford (1995) · Zbl 0836.15005
[23] H. Langer, A. C. M. Ran, D. Temme. Nonnegative solutions of algebraic Riccati equations. Linear Algebra Appl., 261 (1997), 317-352. · Zbl 0881.15017
[24] H. Langer, A. C. M. Ran, B. A. van de Rotten. Invariant subspaces of infinite dimensional Hamiltonians and solutions of the corresponding Riccati equations. volume 130 of Oper. Theory Adv. Appl., pages 235-254. Birkhäuser, Basel, 2002. · Zbl 1044.93014
[25] H. Langer, C. Tretter. Diagonalization of certain block operator matrices and applications to Dirac operators. volume 122 of Oper. Theory Adv. Appl., pages 331-358. Birkhäuser, Basel, 2001. · Zbl 0976.47014
[26] I. Lasiecka, R. Triggiani. Control Theory for Partial Differential Equations: Continuous and Approximation Theorems. I: Abstract Parabolic Systems. Cambridge University Press, 2000. · Zbl 0942.93001
[27] Lions J.-L., Magenes E.: Non-homogeneous boundary value problems and applications. Vol. I.. Springer-Verlag, New York (1972) · Zbl 0227.35001 · doi:10.1007/978-3-642-65217-2
[28] A. S. Markus. Introduction to the Spectral Theory of Polynomial Operator Pencils. Amer. Math. Soc., Providence, 1988. · Zbl 0678.47005
[29] V. Maz’ya. Sobolev spaces with applications to elliptic partial differential equations, volume 342 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, augmented edition, 2011. · Zbl 1217.46002
[30] A. McIntosh, A. Yagi. Operators of type ω without a boundedH∞functional calculus. In Miniconference on Operators in Analysis (Sydney, 1989), volume 24 of Proc. Centre Math. Anal. Austral. Nat. Univ., pages 159-172. Austral. Nat. Univ., Canberra, 1990. · Zbl 0709.47016
[31] Opmeer M. R., Curtain R. F.: New Riccati equations for well-posed linear systems. Systems Control Lett. 52(5), 339-347 (2004) · Zbl 1157.49316 · doi:10.1016/j.sysconle.2004.02.010
[32] O. Staffans. Well-posed linear systems, volume 103 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2005. · Zbl 1057.93001
[33] C. Tretter. Spectral issues for block operator matrices. In Differential equations and mathematical physics (Birmingham, AL, 1999), volume 16 of AMS/IP Stud. Adv. Math., pages 407-423. Amer. Math. Soc., Providence, 2000. · Zbl 1056.47500
[34] C. Tretter. Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London, 2008. · Zbl 1173.47003
[35] Tretter C.: Spectral inclusion for unbounded block operator matrices. J. Funct. Anal. 256(11), 3806-3829 (2009) · Zbl 1179.47005 · doi:10.1016/j.jfa.2008.12.024
[36] H. Triebel. Interpolation theory, function spaces, differential operators. Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995. · Zbl 0830.46028
[37] C. van der Mee. Exponentially dichotomous operators and applications, volume 182 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2008. · Zbl 1158.47001
[38] J. Weidmann. Linear operators in Hilbert spaces, volume 68 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1980. · Zbl 0434.47001
[39] Weiss M., Weiss G.: Optimal control of stable weakly regular linear systems. Math. Control Signals Systems 10(4), 287-330 (1997) · Zbl 0884.49021 · doi:10.1007/BF01211550
[40] Wyss C.: Riesz bases for p-subordinate perturbations of normal operators. J. Funct. Anal. 258(1), 208-240 (2010) · Zbl 1185.47014 · doi:10.1016/j.jfa.2009.09.001
[41] Wyss C.: Hamiltonians with Riesz bases of generalised eigenvectors and Riccati equations. Indiana Univ. Math. J. 60, 1723-1766 (2011) · Zbl 1275.47035 · doi:10.1512/iumj.2011.60.4407
[42] Wyss C., Jacob B., Zwart H.J.: Hamiltonians and Riccati equations for linear systems with unbounded control and observation operators. SIAM J. Control Optim. 50, 1518-1547 (2012) · Zbl 1254.47041 · doi:10.1137/110839199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.