×

LES approach coupled with stochastic forcing of subgrid acceleration in a high-Reynolds-number channel flow. (English) Zbl 1273.76238

Summary: The high-Reynolds-number channel flow is simulated by numerical approach at coarse resolution, in which the instantaneous acceleration is decomposed into filtered and subgrid parts, and then both components are modeled. The filtered acceleration is modeled in the framework of the large-eddy simulation approach. The model for the subgrid acceleration is based on two stochastic processes. The first is for its norm and is based on statistical universalities in fragmentation under scaling symmetry, providing correlation of subgrid forcing across the channel. The second is for its orientation and is based on the Brownian motion on a unit sphere in order to represent a stochastic relaxation toward full isotropy away from the wall. Two main parameters of the stochastic process include the Reynolds number based on the friction velocity and the channel half-width. In order to assess the capability of the model proposed, the paper illustrates its application versus recent high-Reynolds-number direct numerical simulations, including direct numerical simulations performed in this paper.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence

References:

[1] DOI: 10.1017/S0022112082001116 · Zbl 0491.76058 · doi:10.1017/S0022112082001116
[2] DOI: 10.1146/annurev.fluid.32.1.1 · doi:10.1146/annurev.fluid.32.1.1
[3] DOI: 10.1146/annurev.fluid.34.082901.144919 · doi:10.1146/annurev.fluid.34.082901.144919
[4] Sagaut P., Large Eddy Simulation for Incompressible Flows: An introduction,, 2. ed. (2002) · Zbl 1020.76001
[5] DOI: 10.1016/j.jcp.2008.04.015 · Zbl 1166.76025 · doi:10.1016/j.jcp.2008.04.015
[6] DOI: 10.1007/s00162-006-0015-0 · Zbl 1112.76370 · doi:10.1007/s00162-006-0015-0
[7] DOI: 10.1088/1468-5248/3/1/024 · doi:10.1088/1468-5248/3/1/024
[8] Park N., J. Comput. Phys. 227 pp 4190– (2008)
[9] DOI: 10.1016/j.euromechflu.2004.01.003 · Zbl 1058.76566 · doi:10.1016/j.euromechflu.2004.01.003
[10] DOI: 10.1016/S0021-9991(03)00071-8 · Zbl 1047.76523 · doi:10.1016/S0021-9991(03)00071-8
[11] DOI: 10.1017/S0022112099005376 · Zbl 0947.76034 · doi:10.1017/S0022112099005376
[12] DOI: 10.1016/S0010-4655(02)00552-0 · Zbl 1196.76007 · doi:10.1016/S0010-4655(02)00552-0
[13] DOI: 10.1016/j.jcp.2006.08.002 · Zbl 1158.76342 · doi:10.1016/j.jcp.2006.08.002
[14] Sabel’nikov V., Advances in Turbulence XI 117 pp 209– · doi:10.1007/978-3-540-72604-3_66
[15] Lee C., Phys. Rev. Lett. 92 (2004)
[16] DOI: 10.1088/1367-2630/6/1/116 · doi:10.1088/1367-2630/6/1/116
[17] DOI: 10.1063/1.869748 · doi:10.1063/1.869748
[18] DOI: 10.1017/S0022112002001842 · Zbl 1152.76315 · doi:10.1017/S0022112002001842
[19] Jiménez J., Rev. R. Acad. Cien. Serie A. Mat. 101 pp 187– (2007)
[20] DOI: 10.1063/1.864413 · Zbl 0522.76058 · doi:10.1063/1.864413
[21] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[22] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[23] DOI: 10.1017/S0022112004008389 · Zbl 1065.76552 · doi:10.1017/S0022112004008389
[24] DOI: 10.1017/S0022112083000634 · doi:10.1017/S0022112083000634
[25] DOI: 10.1017/S0022112087002337 · doi:10.1017/S0022112087002337
[26] DOI: 10.1063/1.1589014 · Zbl 1186.76353 · doi:10.1063/1.1589014
[27] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[28] Jiménez J., CTR Annual Research Briefs pp 943– (1998)
[29] DOI: 10.1017/S0022112006000607 · Zbl 1095.76021 · doi:10.1017/S0022112006000607
[30] DOI: 10.1017/S0022112008002747 · Zbl 1151.76512 · doi:10.1017/S0022112008002747
[31] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[32] DOI: 10.1017/S002211200400237X · Zbl 1065.76553 · doi:10.1017/S002211200400237X
[33] DOI: 10.1017/S0022112006000814 · Zbl 1157.76346 · doi:10.1017/S0022112006000814
[34] DOI: 10.1063/1.1825451 · Zbl 1187.76248 · doi:10.1063/1.1825451
[35] DOI: 10.1063/1.868137 · Zbl 0825.76326 · doi:10.1063/1.868137
[36] DOI: 10.1017/S0022112062000518 · Zbl 0112.42003 · doi:10.1017/S0022112062000518
[37] DOI: 10.1017/S0022112062000506 · Zbl 0112.42002 · doi:10.1017/S0022112062000506
[38] Monin A. S., Statistical Fluid Mechanics: Mechanics of Turbulence (1981)
[39] DOI: 10.1063/1.857592 · Zbl 0709.76060 · doi:10.1063/1.857592
[40] DOI: 10.1017/S0022112007006052 · Zbl 1177.76150 · doi:10.1017/S0022112007006052
[41] DOI: 10.1007/s100510050162 · doi:10.1007/s100510050162
[42] DOI: 10.1080/13647830500348109 · Zbl 1098.80006 · doi:10.1080/13647830500348109
[43] DOI: 10.1088/0022-3727/41/8/085405 · doi:10.1088/0022-3727/41/8/085405
[44] Kolmogorov A. N., Dokl. Akad. Nauk SSSR 31 pp 99– (1941)
[45] DOI: 10.1016/0021-9991(83)90006-2 · Zbl 0529.76034 · doi:10.1016/0021-9991(83)90006-2
[46] Pascal H., Ph.D. diss., in: Etude d’une turbulence compressée et ou cisaillée entre deux plans paralléles: comparaison entre approche statistique et simulation des équations de Navier-Stokes instantanées (1996)
[47] DOI: 10.1063/1.869966 · Zbl 1147.76463 · doi:10.1063/1.869966
[48] DOI: 10.1063/1.3005862 · Zbl 1182.76330 · doi:10.1063/1.3005862
[49] DOI: 10.1016/j.ijheatfluidflow.2008.07.001 · doi:10.1016/j.ijheatfluidflow.2008.07.001
[50] Dean R. B., J. Fluids Eng. 100 pp 216– (1978)
[51] DOI: 10.1098/rsta.1990.0163 · Zbl 0711.76041 · doi:10.1098/rsta.1990.0163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.