×

Contribution of viscosity to the circulation deposition in the Richtmyer-Meshkov instability. (English) Zbl 1460.76323

Summary: This study focuses on the process of the circulation deposition in the Richtmyer-Meshkov instability (RMI). The growth rate of circulation and its sources are theoretically and numerically studied to reveal the physical mechanism of the viscosity in the circulation deposition process. We derive a predicting model of the circulation rate for RMI. More importantly, all the contributing sources are separately predicted. Particularly, the viscous source, which previously lacked theoretical or numerical investigations, is efficiently predicted. The RMI problems in a large range of initial conditions are simulated with the direct simulation Monte Carlo (DSMC) method to verify our predicting model and further reveal the circulation deposition mechanism. The DSMC simulations provide reliable quantification of the circulation deposition (especially viscous contribution) for RMI due to its molecular nature. Our model predicts the circulation rate, baroclinic and viscous sources accurately for all the cases in comparison with the simulations. A new physical insight into the mechanism of viscosity in RMI is provided. Unlike the previous understandings that nearly all circulation deposition in RMI comes from the baroclinic source, this study reveals the hidden positive contribution of the viscous source, especially for high Mach number conditions (up to 11% of total circulation rate). For RMI, the large viscosity gradient inside the shock waves plays a crucial role in the circulation deposition even under high Reynolds number conditions. Our study also provides exciting opportunities to further understand the viscous contribution to the vorticity dynamics in the reshocked RMI and shock wave-turbulence interactions.

MSC:

76E19 Compressibility effects in hydrodynamic stability
76F50 Compressibility effects in turbulence

Keywords:

vortex dynamics
Full Text: DOI

References:

[1] Abarzhi, S. I., Gauthier, S. & Sreenivasan, K. R.2013Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II. Phil. Trans. R. Soc. A371 (2003), 20130268. · Zbl 1353.00003
[2] Alexander, F. J., Garcia, A. L. & Alder, B. J.1998Cell size dependence of transport coefficients in stochastic particle algorithms. Phys. Fluids10 (6), 1540-1542.
[3] Alsmeyer, H.1976Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech.74 (3), 497-513.
[4] Andreopoulos, Y., Agui, J. H. & Briassulis, G.2000Shock waveturbulence interactions. Annu. Rev. Fluid Mech.32 (1), 309-345. · Zbl 0988.76048
[5] Balakumar, B. J., Orlicz, G. C., Ristorcelli, J. R., Balasubramanian, S., Prestridge, K. P. & Tomkins, C. D.2012Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics. J. Fluid Mech.696, 67-93. · Zbl 1250.76107
[6] Balakumar, B. J., Orlicz, G. C., Tomkins, C. D. & Prestridge, K. P.2008Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock. Phys. Fluids20 (12), 124103. · Zbl 1182.76044
[7] Barber, J. L., Kadau, K., Germann, T. C. & Alder, B. J.2008Initial growth of the Rayleigh-Taylor instability via molecular dynamics. Eur. Phys. J. B64 (2), 271-276.
[8] Barber, J. L., Kadau, K., Germann, T. C. & Alder, B. J.2007Simulation of fluid instabilities using atomistic methods. In AIP Conf. Proc., vol. 955, pp. 301-304. AIP.
[9] Bird, G. A.1970Aspects of the structure of strong shock waves. Phys. Fluids13 (5), 1172-1177.
[10] Bird, G. A.1994Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 1st edn, . Oxford University Press; Clarendon.
[11] Boyd, I. D.2003Predicting breakdown of the continuum equations under rarefied flow conditions. AIP Conf. Proc.663, 899-906. · Zbl 1062.76568
[12] Brenner, H.2005aKinematics of volume transport. Physica A349 (1-2), 11-59.
[13] Brenner, H.2005bNavier-Stokes revisited. Physica A349 (1-2), 60-132.
[14] Brenner, H.2009Bi-velocity hydrodynamics. Physica A388 (17), 3391-3398.
[15] Brouillette, M.2002The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech.34 (1), 445-468. · Zbl 1047.76025
[16] Carles, P. & Popinet, S.2001Viscous nonlinear theory of Richtmyer-Meshkov instability. Phys. Fluids13 (7), 1833-1836. · Zbl 1184.76081
[17] Chen, H., Zhang, B. & Liu, H.2016Non-Rankine-Hugoniot shock zone of Mach reflection in hypersonic rarefied flows. J. Spacecr. Rockets53 (4), 619-628.
[18] Chen, H., Zhang, B. & Liu, H.2019On the particle discretization in hypersonic nonequilibrium flows with the direct simulation Monte Carlo method. Phys. Fluids31 (7), 076102.
[19] Fraley, G.1986Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction. Phys. Fluids29 (2), 376-386. · Zbl 0592.76091
[20] Gallis, M. A., Koehler, T. P., Torczynski, J. R. & Plimpton, S. J.2016Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability. Phys. Rev. Fluids1 (4), 043403.
[21] Gallis, M. A., Koehler, T. P., Torczynski, J. R. & Plimpton, S. J.2015Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability. Phys. Fluids27 (8), 084105.
[22] Garcia, A. L. & Wagner, W.2000Time step truncation error in direct simulation Monte Carlo. Phys. Fluids12 (10), 2621-2633. · Zbl 1184.76174
[23] Gilbarg, D. & Paolucci, D.1953The structure of shock waves in the continuum theory of fluids. J. Ration. Mech. Anal.2, 617-642. · Zbl 0051.18102
[24] Govindarajan, R. & Sahu, K. C.2014Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech.46, 331-353. · Zbl 1297.76067
[25] Greenshields, C. J. & Reese, J. M.2007The structure of shock waves as a test of Brenner’s modifications to the Navier-Stokes equations. J. Fluid Mech.580, 407-429. · Zbl 1177.76185
[26] Hadjiconstantinou, N. G., Garcia, A. L., Bazant, M. Z. & He, G.2003Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys.187 (1), 274-297. · Zbl 1047.76578
[27] Hawley, J. F. & Zabusky, N. J.1989Vortex paradigm for shock-accelerated density-stratified interfaces. Phys. Rev. Lett.63 (12), 1241.
[28] Hejazialhosseini, B., Rossinelli, D. & Koumoutsakos, P.2013Vortex dynamics in 3D shock-bubble interaction. Phys. Fluids25 (11), 110816. · Zbl 1381.76218
[29] Henderson, L. F.1964On the confluence of three shock waves in a perfect gas. Aeronaut. Q.15 (2), 181-197.
[30] Henderson, L. F.1966The refraction of a plane shock wave at a gas interface. J. Fluid Mech.26 (3), 607-637.
[31] Hewett, J. S. & Madnia, C. K.1998Flame-vortex interaction in a reacting vortex ring. Phys. Fluids10 (1), 189-205. · Zbl 1185.80007
[32] Holmes, R. L., Dimonte, G., Fryxell, B., Gittings, M. L., Grove, J. W., Schneider, M., Sharp, D. H., Velikovich, A. L., Weaver, R. P. & Zhang, Q.1999Richtmyer-Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech.389, 55-79. · Zbl 0954.76026
[33] Huang, S., Wang, W. & Luo, X.2018Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H_2 interface at extreme compressing conditions. Phys. Plasmas25 (6), 062705.
[34] Kadau, K., Barber, J. L., Germann, T. C. & Alder, B. J.2008Scaling of atomistic fluid dynamics simulations. Phys. Rev. E78 (4), 045301. · Zbl 1192.76035
[35] Kadau, K., Barber, J. L., Germann, T. C., Holian, B. L. & Alder, B. J.2010Atomistic methods in fluid simulation. Phil. Trans. R. Soc. A368 (1916), 1547-1560. · Zbl 1192.76035
[36] Kadau, K., Germann, T. C., Hadjiconstantinou, N. G., Lomdahl, P. S., Dimonte, G., Holian, B. L. & Alder, B. J.2004Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability. Proc. Natl Acad. Sci. USA101 (16), 5851-5855. · Zbl 1063.76029
[37] Kadau, K., Rosenblatt, C., Barber, J. L., Germann, T. C., Huang, Z., Carlès, P. & Alder, B. J.2007The importance of fluctuations in fluid mixing. Proc. Natl Acad. Sci. USA104 (19), 7741-7745.
[38] Kevlahan, N. K.-R.1997The vorticity jump across a shock in a non-uniform flow. J. Fluid Mech.341, 371-384. · Zbl 0898.76050
[39] Kotelnikov, A. D., Ray, J. & Zabusky, N. J.2000Vortex morphologies on reaccelerated interfaces: visualization, quantification and modeling of one-and two-mode compressible and incompressible environments. Phys. Fluids12 (12), 3245-3264. · Zbl 1184.76301
[40] Lee, D.-K., Peng, G. & Zabusky, N. J.2006Circulation rate of change: a vortex approach for understanding accelerated inhomogeneous flows through intermediate times. Phys. Fluids18 (9), 097102. · Zbl 1185.76801
[41] Li, Y., Wang, Z., Yu, B., Zhang, B. & Liu, H.2019Gaussian models for late-time evolution of two-dimensional shock-light cylindrical bubble interaction. Shock Waves30, 169-184.
[42] Liepmann, H. W., Narasimha, R. & Chahine, M. T.1962Structure of a plane shock layer. Phys. Fluids5 (11), 1313-1324. · Zbl 0111.22902
[43] Liu, H., Chen, H., Yu, B., Zhang, B. & Liu, H.2019On the shock/step-interface interaction in microscale conditions. In AIP Conf. Proc., vol. 2132, p. 070027. AIP Publishing.
[44] Liu, H., Chen, H., Zhang, B. & Liu, H.2018Effects of Mach number on non-Rankine-Hugoniot shock zone of Mach reflection. J. Spacecr. Rockets56 (3), 761-770.
[45] Livescu, D.2013Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability. Phil. Trans. R. Soc. Lond. A371 (2003), 20120185. · Zbl 1353.76028
[46] Lumpkin, F. E. Iii & Chapman, D. R.1992Accuracy of the Burnett equations for hypersonic real gas flows. J. Thermophys. Heat Transfer6 (3), 419-425.
[47] Mcfarland, J., Reilly, D., Creel, S., Mcdonald, C., Finn, T. & Ranjan, D.2014Experimental investigation of the inclined interface Richtmyer-Meshkov instability before and after reshock. Exp. Fluids55 (1), 1640.
[48] Meshkov, E. E.1969Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn.4 (5), 101-104.
[49] Mikaelian, K. O.1993Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys. Rev. E47 (1), 375.
[50] Morgan, R. V., Aure, R., Stockero, J. D., Greenough, J. A., Cabot, W., Likhachev, O. A. & Jacobs, J. W.2012On the late-time growth of the two-dimensional Richtmyer-Meshkov instability in shock tube experiments. J. Fluid Mech.712, 354-383. · Zbl 1275.76104
[51] Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Ranjan, D., Anderson, M. H. & Bonazza, R.2008A computational parameter study for the three-dimensional shock-bubble interaction. J. Fluid Mech.594, 85-124. · Zbl 1159.76344
[52] Paolucci, S. & Paolucci, C.2018A second-order continuum theory of fluids. J. Fluid Mech.846, 686-710. · Zbl 1404.76009
[53] Peng, G., Zabusky, N. J. & Zhang, S.2003Vortex-accelerated secondary baroclinic vorticity deposition and late-intermediate time dynamics of a two-dimensional Richtmyer-Meshkov interface. Phys. Fluids15 (12), 3730-3744. · Zbl 1186.76421
[54] Picone, J. M. & Boris, J. P.1988Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech.189, 23-51.
[55] Picone, J. M., Oran, E. S., Boris, J. P. & Young, T. R. Jr 1984 Theory of vorticity generation by shock wave and flame interactions. Tech. Rep. Naval Research Lab, Washington DC.
[56] Polyanin, A. D. & Zaitsev, V. F.2017Handbook of Ordinary Differential Qquations: Exact Solutions, Methods, and Problems. Chapman and Hall/CRC.
[57] Quirk, J. J. & Karni, S.1996On the dynamics of a shock-bubble interaction. J. Fluid Mech.318, 129-163. · Zbl 0877.76046
[58] Ranjan, D., Oakley, J. & Bonazza, R.2011Shock-bubble interactions. Annu. Rev. Fluid Mech.43, 117-140. · Zbl 1299.76125
[59] Reinaud, J., Joly, L. & Chassaing, P.2000The baroclinic secondary instability of the two-dimensional shear layer. Phys. Fluids12 (10), 2489-2505. · Zbl 1184.76450
[60] Ren, W., Liu, H. & Jin, S.2014An asymptotic-preserving Monte Carlo method for the Boltzmann equation. J. Comput. Phys.276, 380-404. · Zbl 1349.82110
[61] Renard, P.-H., Thevenin, D., Rolon, J.-C. & Candel, S.2000Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci.26 (3), 225-282.
[62] Richtmyer, R. D.1960Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths13 (2), 297-319.
[63] Rudinger, G. & Somers, L. M.1960Behaviour of small regions of different gases carried in accelerated gas flows. J. Fluid Mech.7 (2), 161-176. · Zbl 0092.42802
[64] Samtaney, R. & Meiron, D. I.1997Hypervelocity Richtmyer-Meshkov instability. Phys. Fluids9 (6), 1783-1803. · Zbl 1185.76805
[65] Samtaney, R., Ray, J. & Zabusky, N. J.1998Baroclinic circulation generation on shock accelerated slow/fast gas interfaces. Phys. Fluids10 (5), 1217-1230. · Zbl 1185.76806
[66] Samtaney, R. & Zabusky, N. J.1993On shock polar analysis and analytical expressions for vorticity deposition in shock-accelerated density-stratified interfaces. Phys. Fluids A5 (6), 1285-1287. · Zbl 0777.76045
[67] Samtaney, R. & Zabusky, N. J.1994Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech.269, 45-78.
[68] Schilling, O., Latini, M. & Don, W. S.2007Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Phys. Rev. E76 (2), 026319. · Zbl 1146.76456
[69] Sohn, S.-I.2009Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys. Rev. E80 (5), 055302.
[70] Uribe, F. J. & Velasco, R. M.2018Shock-wave structure based on the Navier-Stokes-Fourier equations. Phys. Rev. E97 (4), 043117.
[71] Walchli, B. & Thornber, B.2017Reynolds number effects on the single-mode Richtmyer-Meshkov instability. Phys. Rev. E95 (1), 013104.
[72] Wang, W. L. & Boyd, I. D.2003Predicting continuum breakdown in hypersonic viscous flows. Phys. Fluids15 (1), 91-100. · Zbl 1185.76388
[73] Wang, Z., Yu, B., Chen, H., Zhang, B. & Liu, H.2018Scaling vortex breakdown mechanism based on viscous effect in shock cylindrical bubble interaction. Phys. Fluids30 (12), 126103.
[74] Weber, C. R., Clark, D. S., Cook, A. W., Busby, L. E. & Robey, H. F.2014Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation. Phys. Rev. E89 (5), 053106.
[75] Wu, J., Ma, H. & Zhou, M.2007Vorticity and Vortex Dynamics, 1st edn, chap. 2. Springer.
[76] Wu, Z., Huang, S., Ding, J., Wang, W. & Luo, X.2018Molecular dynamics simulation of cylindrical Richtmyer-Meshkov instability. Sci. China Phys., Mech. Astron.61 (11), 114712.
[77] Yang, J., Kubota, T. & Zukoski, E. E.1991An analytical and computational investigation of shock-induced vortical flows. In 30th Aerospace Sciences Meeting and Exhibit, p. 316. American Institute of Aeronautics and Astronautics.
[78] Yang, J., Kubota, T. & Zukoski, E. E.1994A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech.258, 217-244. · Zbl 0800.76385
[79] Yang, X., Chern, I.-L., Zabusky, N. J., Samtaney, R. & Hawley, J. F.1992Vorticity generation and evolution in shock-accelerated density-stratified interfaces. Phys. Fluids A4 (7), 1531-1540.
[80] Zabusky, N. J. & Zeng, S. M.1998Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-spherical fast/slow bubble interactions. J. Fluid Mech.362, 327-346. · Zbl 0935.76039
[81] Zabusky, N. J.1999Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments. Annu. Rev. Fluid Mech.31 (1), 495-536.
[82] Zhakhovskii, V. V., Zybin, S. V., Abarzhi, S. I. & Nishihara, K.2006Atomistic dynamics of the Richtmyer-Meshkov instability in cylindrical and planar geometries. In AIP Conf. Proc., vol. 845, pp. 433-436. AIP.
[83] Zhang, B., Chen, H., Yu, B., He, M. & Liu, H.2019Molecular simulation on viscous effects for microscale combustion in reactive shock-bubble interaction. Combust. Flame208, 351-363.
[84] Zhang, B., Liu, H. & Jin, S.2016An asymptotic preserving Monte Carlo method for the multispecies Boltzmann equation. J. Comput. Phys.305, 575-588. · Zbl 1349.82133
[85] Zhang, S., Peng, G. & Zabusky, N. J.2005Vortex dynamics and baroclinically forced inhomogeneous turbulence for shock-planar heavy curtain interactions. J. Turbul.6 (6), N3. · Zbl 1083.76546
[86] Zhou, Y.2017aRayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep.720-722, 1-136. · Zbl 1377.76016
[87] Zhou, Y.2017bRayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep.723, 1-160. · Zbl 1377.76017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.