×

Complexity and asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. (English) Zbl 1348.92061

Summary: We have considered the complexity and asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. We have used coupled maps to model this process. It includes the coupling parameter, cell affinity and environmental factor as master parameters of the model. We have introduced: (i) the Lempel-Ziv complexity spectrum and (ii) the Lempel-Ziv complexity spectrum highest value to analyze the dynamics of two cell model. The asymptotic stability of this dynamical system using an eigenvalue-based method has been considered. Using these complexity measures we have noticed an “island” of low complexity in the space of the master parameters for the weak coupling. We have explored how stability of the equilibrium of the biochemical substance exchange in a multi-cell system \((N=100)\) is influenced by the changes in the master parameters of the model for the weak and strong coupling. We have found that in highly chaotic conditions there exists space of master parameters for which the process of biochemical substance exchange in a coupled ring of cells is stable.

MSC:

92C40 Biochemistry, molecular biology
39A33 Chaotic behavior of solutions of difference equations
39A30 Stability theory for difference equations
68Q30 Algorithmic information theory (Kolmogorov complexity, etc.)

References:

[1] Levin, S. A., Fundamental questions in biology, PLOS Biol, 4, e300 (2006)
[2] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: a universal concept in nonlinear sciences (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0993.37002
[3] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys Rep, 469, 93-153 (2008)
[4] Chen, Y.; Rangarajan, G.; Ding, M., General stability analysis of synchronized dynamics in coupled systems, Phys Rev E, 67, 026209 (2003)
[5] Ghosh, S.; Rangarajan, G.; Sinha, S., Stability of synchronization in a multi-cellular system, Europhys Lett, 92, 40012 (2010)
[6] Mihailović, D. T.; Balaž, I.; Arsenić, I., A numerical study of synchronization in the process of biochemical substance exchange in a diffusively coupled ring of cells, Central Eur J Phys, 11, 440-447 (2013)
[7] Rajesh, S.; Sinha, S.; Sinha, S., Synchronization in coupled cells with activator-inhibitor pathways, Phys Rev E, 75, 011906 (2007)
[8] Rajesh, S.; Sinha, S., Measuring collective behaviour of multicellular ensembles: role of space-time scales, J Biosci, 33, 289-301 (2008)
[9] Maithreye, R.; Suguna, C.; Sinha, S., Collective dynamics of multicellular systems, Pramana - J Phys, 77, 843-853 (2011)
[10] Kolter, R. D.; Siegele, A.; Tormo, A., The stationary phase of the bacterial life cycle, Annu Rev Microbiol, 47, 855-874 (1993)
[11] Spector, M. P.; Kenyon, W. J., Resistance and survival strategies of Salmonella enterica to environmental stresses, Food Res Int, 45, 455-481 (2012)
[12] Degroot, H.; Littauer, A., Hypoxia, reactive oxygen and cell injury, Free Radical Biol Med, 6, 541-551 (1983)
[13] Jones, D. P., The role of oxygen concentration in oxidative stress: hypoxic and hyperoxic models, (Sies, H., Oxidative stress (1985), Academic Press: Academic Press London), 151-195
[14] Crutchfield, J. P., Between order and chaos, Nat Phys, 8, 17-24 (2012)
[15] Binney, J. J.; Dowrick, N. J.; Fisher, A. J.; Newman, M. E.J., The theory of critical phenomena (1992), Oxford University Press: Oxford University Press Oxford · Zbl 0771.00009
[16] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev Mod Phys, 65, 851-1112 (1993) · Zbl 1371.37001
[17] Manneville, P., Dissipative structures and weak turbulence (1990), Academic Press: Academic Press Boston · Zbl 0714.76001
[19] Adami, C.; Cerf, N. J., Physical complexity of symbolic sequences, Physica D, 137, 62-69 (2000) · Zbl 0951.68514
[20] Adimya, M.; Crauste, F.; Marquet, C., Asymptotic behavior and stability switch for a mature-immature model of cell differentiation, Nonlinear Anal Real, 11, 2913-2929 (2010) · Zbl 1197.35043
[21] Wang, J.; Huang, G.; Takeuchi, Y., Global asymptotic stability for HIV-1 dynamics with two distributed delays, Math Med Biol, 29, 283-300 (2012) · Zbl 1401.92141
[22] Yan, Y.; Kou, C., Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay, Math Comput Simul, 82, 1572-1585 (2012) · Zbl 1253.92037
[23] Zheng, Y. G.; Wang, Z. H., Stability analysis of nonlinear dynamic systems with slowly and periodically varying delay, Commun Nonlinear Sci, 17, 3999-4009 (2012) · Zbl 1256.93090
[24] Skryabin, D. V., Stability of multi-parameter solitons: asymptotic approach, Physica D, 139, 186-193 (2000) · Zbl 0987.37073
[25] Choi, Y.-P.; Ha, S.-Y.; Jung, S.; Kim, Y., Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241, 735-754 (2012) · Zbl 1238.34102
[26] Aguiar, M.; Ashwin, P.; Dias, A.; Field, M., Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation, J Nonlinear Sci, 21, 271-323 (2011) · Zbl 1254.37053
[27] Mihailović, D. T.; Budinčević, M.; Balaž, I.; Mihailović, A., Stability of intercellular exchange of biochemical substances affected by variability of environmental parameters, Mod Phys Lett B, 25, 2407-2417 (2011) · Zbl 1318.92011
[28] Balaz, I.; Mihailovic, D. T., Modeling the intercellular exchange of signaling molecules depending on intra- and inter-cellular environmental parameters, Arch Biol Sci Belgrade, 62, 947-956 (2010)
[29] Devaney, R. L., An introduction to chaotic dynamical systems (2003), Westview Press: Westview Press Boulder · Zbl 1025.37001
[30] Gunji, Y.-P.; Kamiura, M., Observational heterarchy enhancing active coupling, Physica D, 198, 74-105 (2004) · Zbl 1062.93003
[31] Cover, T. M.; Thomas, J. A., Elements of information theory (1991), Wiley: Wiley New York · Zbl 0762.94001
[32] Li, M.; Vitanyi, P., An introduction to Kolmogorov complexity and its applications (1997), Springer Verlag: Springer Verlag Berlin · Zbl 0866.68051
[33] Lempel, A.; Ziv, J., On the complexity of finite sequences, IEEE Trans Inf Theory, 22, 75-81 (1976) · Zbl 0337.94013
[34] Hu, J.; Gao, J.; Principe, J. C., Analysis of biomedical signals by the Lempel-Ziv complexity: the effect of finite data size, IEEE Trans Bio-Med Eng, 53, 2606-2609 (2006)
[35] Krabs, W.; Pickl, S., Dynamical systems - stability, controllability and chaotic behavior (2010), Springer · Zbl 1207.37001
[36] Mihailović, D. T.; Balaž, I., Synchronization in biochemical substance exchange between two cells, Mod Phys Lett B, 26 (2012), 1150031-1 · Zbl 1253.37086
[37] Varga, R. S., Geršgorin and his circles (2004), Springer Verlag: Springer Verlag Berlin · Zbl 1057.15023
[38] Cvetković, Lj.; Kostić, V.; Varga, R. S., A new Geršgorin-type eigenvalue inclusion set, ETNA Electron Trans Numer Anal, 18, 73-80 (2004) · Zbl 1069.15016
[39] Cvetković, Lj.; Kostić, V., New subclasses of block H-matrices with applications to parallel decomposition-type relaxation methods, Numer Alg, 42, 3-4, 325-334 (2006) · Zbl 1111.65028
[40] Varga, S.; Cvetković, Lj.; Kostić, V., Approximation of the minimal Geršgorin set of a square complex matrix, ETNA Electron Trans Numer Anal, 30, 398-405 (2008) · Zbl 1188.15008
[41] Cvetković, Lj.; Bru, R.; Kostić, V.; Pedroche, F., A simple generalization of Gersgorin’s theorem, Adv Comput Math, 35, 271-280 (2011) · Zbl 1241.15014
[42] Zhang, X. S.; Roy, R. J.; Jensen, E. W., EEG complexity as a measure of depth of anesthesia for patients, IEEE Trans Bio-Med Eng, 48, 1424-1433 (2001)
[43] Radhakrishnan, N.; Wilson, J. D.; Loizou, P. C., An alternate partitioning technique to quantify the regularity of complex time series, Int J Bifurcation Chaos, 10, 1773-1779 (2000)
[44] Ferenets, R.; Lipping, T.; Anier, A.; Ville, J.; Sari, M.; Seppo, H., Comparison of entropy and complexity measures for the assessment of depth of sedation, IEEE Trans Bio-Med Eng, 53, 1067-1077 (2006)
[45] Zeidler, E., Applied functional analysis: application to mathematical physics (1995), Springer: Springer New York · Zbl 0834.46002
[46] Michel, A. N.; Hou, L.; Liu, D., Stability of dynamical systems: continuous, discontinuous and discrete systems (2008), Birkhäuser: Birkhäuser Boston · Zbl 1146.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.