×

Bounds for invariant distances on pseudoconvex Levi corank one domains and applications. (English. French summary) Zbl 1326.32020

A smoothly bounded pseudoconvex domain \(D \subset \mathbb C^n\) is said to be of corank one if the Levi form of its boundary has no more than one degenerate eigenvalue. For a distance function \(d\) on \(D\) we denote by \(d^i\) the associated inner distance. The first main result of the article under review is a precise upper and lower bound for the distances of Bergman and Kobayashi and the inner distance for the Carathéodory distance on a corank one pseudoconvex domain \(D\). For this purpose the authors introduce optimal inner domains of comparison \(Q(\zeta, \delta)\), where \(\zeta \in D\) lies near \(\partial D\) and \(\delta >0\). Using these domains a pseudodistance \(\varrho\) is constructed and it is shown that any of the above-mentioned distances can be estimated from above and from below by a constant times \(\varrho\). A second main result gives a limit formula for the Fridman invariant on a corank one domain \(D\) as above.
The next result is about non-existence of biholomorphic maps between certain bounded pseudoconvex domains:
Let \(D_1,D_2\) be bounded domains in \(\mathbb C^n\). Let \(p^0 \in \partial D_1\) and \(q^0 \in \partial D_2\) be given, such that \(\partial D_1\) is strongly pseudoconvex near \(p^0\) and \(\partial D_2\) is smoothly bounded and of finite type near \(q^0\) and of corank one at \(q^0\). Then there cannot exist a biholomorphic map \(f:D_1 \to D_2\) for which \(q^0\) lies in the cluster set of \(f\) at \(p^0\).
Two more results treat the question of boundary continuity for Kobayashi isometries. For this purpose the authors compute explicitly the Kobayashi differential metric of the “egg domain” \(E_{2m}:=\{z \mid |z_1|^{2m} + |z_2|^2+\dots+|z_n|^2 <1\}\), where \(m \geq 1\) is an arbitrary integer. This is then applied to prove the following theorem:
Let \(D_1,D_2\) be bounded domains in \(\mathbb C^n\). Let \(p^0 \in \partial D_1\) and \(q^0 \in \partial D_2\) and assume the rank of the Levi form of \(\partial D_1\) is at least \(n-2\) near \(p^0\). Assume that \(\partial D_1\) is smooth and of finite type near \(p^0\) and \(\partial D_2\) is strongly pseudoconvex near \(q^0\). Then any \(C^1\)-isometry (in the Kobayashi metric) \(f:D_1 \to D_2\) for which \(q^0\) lies in the cluster set of \(f\) at \(p^0\) extends continuously to \(\overline {D_1}\) near \(p^0\).
Finally the following non-existence result for \(C^1\) Kobayashi isometries between perturbations of \(E_{2m}\) and certain domains is shown:
Let \(D_1,D_2\) be bounded domains in \(\mathbb C^n\). Let \(p^0 \in \partial D_1\) and \(q^0 \in \partial D_2\). Suppose that \(\partial D_2\) is \(C^2\)-strongly pseudoconvex near \(q^0\). Further assume that, in suitable local coordinates, \(\partial D_1\) is given near \(p^0\) by \[ 2 \operatorname{Re} z_n + |z_1|^{2m} + |z_2|^2+\cdots+|z_{n-1}|^2 + R(z, \bar z) <0 \] with an integer \(m>1\) and a remainder term \(R\) that goes to zero faster than at least one of the monomials of weight one. Then there cannot exist a \(C^1\)-isometry \(f:D_1 \to D_2\) for which \(q^0\) lies in the cluster set of \(f\) at \(p^0\).

MSC:

32F45 Invariant metrics and pseudodistances in several complex variables
32F18 Finite-type conditions for the boundary of a domain

References:

[1] Abate (M.).— Boundary behaviour of invariant distances and complex geodesics, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 80(8), p. 100-106 (1986). · Zbl 0664.32017
[2] Abate (M.), Tauraso (R.).— The Lindelöf principle and angular derivatives in convex domains of finite type, J. Aust. Math. Soc. 73, no. 2, p. 221-250 (2002). · Zbl 1113.32301
[3] Aladro (G.).— Localization of the Kobayashi distance, J. Math. Anal. Appl. 181, p. 200-204 (1994). · Zbl 0797.32015
[4] Berteloot (F.).— Principle de Bloch et estimations de la metrique de Kobayashi des domains in \({\mathbb{C}}^2\), J. Geom. Anal. 1, p. 29-37 (2003). · Zbl 1040.32011
[5] Balakumar (G. P.), Verma (K.).— Some regularity theorems for CR mappings, Math. Z., 274, p. 117-144 (2013). · Zbl 1346.32009
[6] Balogh (Z.), Bonk (M.).— Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv. 75, p. 504-533 (2000). · Zbl 0986.32012
[7] Barletta (E.), Bedford (E.).— Existence of proper mappings from domains in \({\mathbb{C}}^2\). Indiana Univ. Math. J. 39, no. 2, p. 315-338 (1990). · Zbl 0707.32005
[8] Bedford (E.), Pinchuk (S. I.).— Domains in \({\mathbb{C}}^{n+1}\) with noncompact automorphism group, J. Geom. Anal. 1, no. 3, p. 165-191 (1991). · Zbl 0733.32014
[9] Bell (S.).— Smooth bounded strictly and weakly pseudoconvex domains cannot be biholomorphic, Bull. Amer. Math. Soc. (N.S.) 4, no. 1, p. 119-120 (1981). · Zbl 0507.32012
[10] Blank (B. E.), Fan (D.), Klein (D.), Krantz (S.), Ma (D.), Peng (M. Y.).— The Kobayashi metric of a complex ellipsoid in \({\mathbb{C}}^2\), Experiment. Math. 1, no. 1, p. 47-55 (1992). · Zbl 0783.32012
[11] Catlin (D.).— Estimates of invariant metrics on pseudoconvex domains of dimension two, math. Z. 200, p. 429-466 (1989). · Zbl 0661.32030
[12] Cho (S.).— A lower bound on the Kobayashi metric near a point of finite type in \({\mathbb{C}}^n\), J. Geom. Anal. 2, no. 4, p. 317-325 (1992). · Zbl 0756.32015
[13] Cho (S.).— Estimates of invariant metrics on some pseudoconvex domains in \({\mathbb{C}}^n\), J. Korean Math. Soc. 32, no. 5, p. 661-678 (1995). · Zbl 0857.32012
[14] Cho (S.).— Boundary behaviour of the Bergman kernel function on some pseudoconvex domains in \({\mathbb{C}}^n\), Trans. Amer. Math. Soc. 345, no. 2, p. 803-817 (1994). · Zbl 0813.32023
[15] Cho (S.).— A mapping property of the Bergman projection on certain pseudoconvex domains. Tohoku Math. J. (2) 48, no. 4, p. 533-542 (1996). · Zbl 0882.32008
[16] Coupet (B.), Pinchuk (S.).— Holomorphic equivalence problem for weighted homogeneous rigid domains in \({\mathbb{C}}^{n+1} \), Complex Analysis in Modern Mathematics FAZIS, Moscow, p. 57-70 (2001). · Zbl 1057.32008
[17] Coupet (B.), Pinchuk (S.), Sukhov (A.).— On boundary rigidity and regularity of holomorphic mappings, Internat. J. Math. 7, p. 617-643 (1996). · Zbl 0952.32011
[18] Diederich (K.).— Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten, Math. Ann. 187, p. 9-36 (1970). · Zbl 0184.31302
[19] Diederich (K.), Fornaess (J. E.).— Proper holomorphic images of strictly pseudoconvex domains, Math. Ann. 259, no. 2, p. 279-286 (1982). · Zbl 0486.32013
[20] Diederich (K.), Fornaess (J. E.).— Pseudoconvex domains.— bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39, no. 2, p. 129-141 (1977). · Zbl 0353.32025
[21] Fridman (B.).— Biholomorphic invariants of a hyperbolic manifold and some applications, Trans. Amer. Math. Soc. 276, p. 685-698 (1983). · Zbl 0525.32022
[22] Friedland (S.), Milnor (J.).— Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems 9(1), p. 67-99 (1989). · Zbl 0651.58027
[23] Fornaess (J. E.), Sibony (N.).— Consuction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58, p. 633-655 (1989). · Zbl 0679.32017
[24] Forstneric (F.), Rosay (J. P.).— Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279, p. 239-252 (1987). · Zbl 0644.32013
[25] Gaussier (H.), Seshadri (H.).— Totally geodesic discs in strongly convex domains, Math. Z. 274, no. 1-2, p. 185-197 (2013). · Zbl 1272.32013
[26] Graham (I.).— Boundary behaviour of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \({\mathbb{C}}^n\) with smooth boundary, Trans. Amer. Math. Soc. 207, p. 219-240 (1975). · Zbl 0305.32011
[27] Greene (R.), Krantz (S.).— Deformation of complex structures, estimates for the \(\overline{\partial }\) equation and stability of the Bergman kernel, Adv. in Math. 43, no. 1, p. 1-86 (1982). · Zbl 0504.32016
[28] Hörmander (L.).— \(L^2\)-estimates and existence theorems for the \(\overline{\partial }\) operator, Acta Math. 113, p. 89-152 (1965). · Zbl 0158.11002
[29] Herbort (G.).— On the invariant differential metrics near pseudoconvex boundary points where the Levi form has corank one, Nagoya Math. J. 130, p. 25-54 (1993). · Zbl 0773.32015
[30] Herbort (G.).— Invariant metrics and peak functions on pseudoconvex domains of homogeneous finite diagonal type, Math. Z. 209, no. 2, p. 223-23 (1992). · Zbl 0735.32018
[31] Herbort (G.).— Estimation on invariant distances on pseudoconvex domains of finite type in dimension two, Math. Z. 251, no. 3, p. 673-703 (2005). · Zbl 1081.32007
[32] Herbort (G.).— Estimation of the Carathéodory distance on pseudoconvex domains of finite type whose boundary has Levi form of corank at most one. Ann. Polon. Math. 109, no. 3, p. 209-260 (2013). · Zbl 1297.32012
[33] Jarnicki (M.), Pflug (P.).— Invariant distances and metrics in Complex Analysis, de Gruyter Expositions in Mathematics, 9. Walter de Gruyter Co., Berlin (1993). · Zbl 0789.32001
[34] Jarnicki (M.), Pflug (P.), Zeinstra (R.).— Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20, no. 4, p. 535-543 (1993). · Zbl 0812.32010
[35] Kim (K.T. ), Krantz (S.).— A Kobayashi metric version of Bun Wong’s theorem, Complex Var. Elliptic Equ. 54, no. 3-4, p. 355-369 (2009). · Zbl 1172.32002
[36] Klimek (M.).— Extremal plurisubharmonic functions and invariant pseudodistances. Bull. Soc. Math. France 113, no. 2, p. 231-240 (1985). · Zbl 0584.32037
[37] Kim (K.T. ) and Ma (D.).— Characterisation of the Hilbert ball by its automorphisms, J. Korean Math. Soc. 40, p. 503-516 (2003). · Zbl 1039.32032
[38] Krantz (S.).— Invariant metrics and the boundary behaviour of holomorphic functions on domains in \({\mathbb{C}}^n\), J. Geom. Anal. 1, p. 71-97 (1991). · Zbl 0728.32002
[39] Ma (D.).— On iterates of holomorphic maps, Math. Z. 207, p. 417-428 (1991). · Zbl 0712.32018
[40] Ma (D.).— Sharp estimates of the Kobayashi metric near strongly pseudoconvex points, The Madison Symposium on Complex Analysis (Madison, WI, 1991), 329-338,Contemp. Math., 137 Amer. Math. Soc., Providence, RI (1992). · Zbl 0770.32013
[41] Ma (D.).— Smoothness of Kobayashi metric of ellipsoids, Complex Variables Theory Appl. 26, no. 4, p. 291-298 (1995). · Zbl 0841.32015
[42] Mahajan (P.).— On isometries of the Kobayashi and Carathéodory metrics, Ann. Polon. Math. 104, no. 2, p. 121-151 (2012). · Zbl 1244.32006
[43] Mok (N.).— Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric. J. Eur. Math. Soc. (JEMS) 14, no. 5, p. 1617-1656 (2012). · Zbl 1266.32014
[44] Mahajan (P.), K. Verma (K.).— Some aspects of the Kobayashi and Carathéodory metrics on pseudoconvex domains, J. Geom. Anal. 22, no. 2, p. 491-560 (2012). · Zbl 1254.32016
[45] Nikolov (N.).— Comparison of invariant functions on strongly pseudoconvex domains, J. Math. Anal. Appl. 421, no. 1, p. 180-185 (2015). · Zbl 1297.32013
[46] Nikolov (N.).— Estimates of invariant distances on “convex” domains, Ann. Mat. Pura Appl. (4) 193, no. 6, p. 1595-1605 (2014). · Zbl 1305.32001
[47] Pinchuk (S. I.).— Holomorphic inequivalence of certain classes of domains in \({\mathbb{C}}^n\), Math. USSR Sb. (N.S), 39, p. 61-86 (1980). · Zbl 0464.32014
[48] Range (R. M.).— A remark on bounded strictly plurisubharmonic exhaustion functions. Proc. Amer. Math. Soc. 81, no. 2, p. 220-222 (1981). · Zbl 0474.32009
[49] Reiffen (H. J.).— Die differentialgeometrischen Eigenschaften der invarianten Distanzfunktion von Carathéodory. (German) Schr. Math. Inst. Univ. Münster. 26 (1963). · Zbl 0115.16303
[50] Royden (H. L.).— Remarks on the Kobayashi metric, Several Complex Variables II (College Park, MD, 1970), Lecture Notes in Math. 185, Springer, Berlin, p. 125-137 (1971). · Zbl 0218.32012
[51] Sibony (N.).— Une classe de domaines pseudoconvexes. (French) [A class of pseudoconvex domains], Duke Math. J. 55, no. 2, p. 299-319 (1987). · Zbl 0622.32016
[52] Sibony (N.).— Some aspects of weakly pseudoconvex domains. Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), p. 199-231, Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI (1991). · Zbl 0747.32006
[53] Seshadri (H.), Verma (K.).— On isometries of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(5), V, p. 393-417 (2006). · Zbl 1170.32309
[54] Seshadri (H.), Verma (K.).— On the compactness of isometry groups in complex analysis, Complex Var. Elliptic Equ., 54, p. 387-399 (2009). · Zbl 1170.32007
[55] Sukhov (A.).— On boundary behaviour of holomorphic mappings, (Russian), Mat. Sb. 185 (1994), p. 131-142; (English transl.) Russian Acad. Sci. Sb. Math. 83, p. 471-483 (1995). · Zbl 0843.32016
[56] Thai (Do D.), Thu (Ninh V.).— Characterization of domains in \({\mathbb{C}}^n\) by their noncompact automorphism groups, Nagoya Math. J. 196, p. 135-160 (2009). · Zbl 1187.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.