×

Existence of Pareto solutions for vector polynomial optimization problems with constraints. (English) Zbl 1507.90125

This paper deals with a vector polynomial optimization problem over a basic closed semi-algebraic set. The considered problem is a constrained vector polynomial optimization, i.e., \(\min f(x)\), where \(x\) belongs to \(S\), the set of \(n\)-vectors with positive coordinates, subject to polynomial equalities type restrictions. \(S\) is a closed, semi-algebraic set and the assumption is that \(S\) is unbounded. The authors deal with the Pareto value (VPO), Pareto solution, weak Pareto value and weak Pareto solution and denoted by \(\mathrm{sol(VPO)}\) (resp., \(\mathrm{solw(VPO)}\)) as the set of all Pareto solutions (resp., weak Pareto solutions). In the paper, the existence of Pareto solutions to the constrained vector polynomial optimization problem (VPO) under some conditions is proved. The authors do not need any convexity assumptions in the problem (VPO), and they consider the problem (VPO) over a closed (and unbounded) semi-algebraic set \(S\). They define the concepts concerning the Palais-Smale, Cerami condition and establish some relationships between them (Theorem 4.1). All these concepts play an important role in establishing some sufficient conditions for the existence of Pareto solutions to the problem (VPO). In the article, an example is constructed to show that the assumption on the Mangasarian-Fromovitz constraint qualification at infinity of \(S\) cannot be dropped. Besides, several examples are also designed to illustrate some related terminologies. The results are some sufficient conditions for the existence of Pareto solutions to the problem (VPO). The obtained results improve and extend the existing theorems in the polynomial setting.

MSC:

90C23 Polynomial optimization
90C29 Multi-objective and goal programming
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)

Software:

ParetoImageSDP

References:

[1] Ahmadi, AA; Zhang, J., On the complexity of testing attainment of the optimal value in nonlinear optimization, Math. Program., 184, 221-241 (2020) · Zbl 1451.90176 · doi:10.1007/s10107-019-01411-1
[2] Bajbar, T.; Stein, O., Coercive polynomials and their Newton polytopes, SIAM J. Optim., 25, 1542-1570 (2015) · Zbl 1322.90092 · doi:10.1137/140980624
[3] Bajbar, T.; Stein, O., Coercive polynomials: stability, order of growth, and Newton polytopes, Optimization, 68, 99-124 (2019) · Zbl 1409.14083 · doi:10.1080/02331934.2018.1426585
[4] Bao, TQ; Mordukhovich, BS, Variational principles for set-valued mappings with applications to multiobjective optimization, Control Cybern., 36, 531-562 (2007) · Zbl 1166.49018
[5] Bao, TQ; Mordukhovich, BS, Relative Pareto minimizers for multiobjective problems: existence and optimality conditions, Math. Program., 122, 301-347 (2010) · Zbl 1184.90149 · doi:10.1007/s10107-008-0249-2
[6] Belousov, EG; Klatte, D., A Frank-Wolfe type theorem for convex polynomial programs, Comput. Optim. Appl., 22, 37-48 (2002) · Zbl 1029.90054 · doi:10.1023/A:1014813701864
[7] Benedetti, R.; Risler, J., Real Algebraic and Semi-algebraic Sets (1991), Paris: Hermann, Paris · Zbl 0694.14006
[8] Blanco, V.; Puerto, J.; Ali, SEHB, A semidefinite programming approach for solving multiobjective linear programming, J. Glob. Optim., 58, 465-480 (2014) · Zbl 1327.90277 · doi:10.1007/s10898-013-0056-z
[9] Bochnak, J.; Coste, M.; Roy, M-F, Real Algebraic Geometry (1998), New York: Springer, New York · Zbl 0912.14023 · doi:10.1007/978-3-662-03718-8
[10] Bolte, J.; Hochart, A.; Pauwels, E., Qualification conditions in semialgebraic programming, SIAM J. Optim., 28, 1867-1891 (2018) · Zbl 1396.49007 · doi:10.1137/16M1133889
[11] Borwein, JM, On the existence of Pareto efficient points, Math. Oper. Res., 8, 64-73 (1983) · Zbl 0508.90080 · doi:10.1287/moor.8.1.64
[12] Corley, H., An existence result for maximization with respect to cones, J. Optim. Theory Appl., 31, 277-281 (1980) · Zbl 0416.90068 · doi:10.1007/BF00934115
[13] Deng, S., Characterizations of the nonemptiness and compactness of solution sets in convex vector optimization, J. Optim. Theory Appl., 96, 123-131 (1998) · Zbl 0897.90163 · doi:10.1023/A:1022615217553
[14] Deng, S., On efficient solutions in vector optimization, J. Optim. Theory Appl., 96, 201-209 (1998) · Zbl 0897.90164 · doi:10.1023/A:1022627520279
[15] Deng, S., Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization, J. Optim. Theory Appl., 144, 29-42 (2010) · Zbl 1188.90232 · doi:10.1007/s10957-009-9589-1
[16] Dias, LRG; Joiţa, C.; Tibǎr, M., Atypical points at infinity and algorithmic detection of the bifurcation locus of real polynomials, Math. Z., 298, 1545-1558 (2021) · Zbl 1467.14027 · doi:10.1007/s00209-020-02662-x
[17] Dias, LRG; Tanabé, S.; Tibǎr, M., Toward effective detection of the bifurcation locus of real polynomial maps, Found. Comput. Math., 17, 837-849 (2017) · Zbl 1454.32018 · doi:10.1007/s10208-016-9303-2
[18] Dias, LRG; Tibǎr, M., Detecting bifurcation values at infinity of real polynomials, Math. Z., 279, 311-319 (2015) · Zbl 1329.14027 · doi:10.1007/s00209-014-1369-4
[19] Dinh, ST; Hà, HV; Phạm, T-S, A Frank-Wolfe type theorem for nondegenerate polynomial programs, Math. Program., 147, 519-538 (2014) · Zbl 1297.90126 · doi:10.1007/s10107-013-0732-2
[20] Dinh, ST; Phạm, T-S, Stability of closedness of closed convex sets under linear mappings, J. Convex Anal., 28, 1281-1291 (2021) · Zbl 1540.47113
[21] Ehrgott, M., Multicriteria Optimization (2005), Berlin: Springer, Berlin · Zbl 1132.90001
[22] Gutiérrez, C.; López, R.; Novo, V., Existence and boundedness of solutions in infinite-dimensional vector optimization problems, J. Optim. Theory Appl., 162, 515-547 (2014) · Zbl 1301.49016 · doi:10.1007/s10957-014-0541-7
[23] Hà, HV; Phạm, TS, Genericity in Polynomial Optimization (2017), Singapore: World Scientific Publishing, Singapore · Zbl 1370.14049 · doi:10.1142/q0066
[24] Hà, TXD, Variants of the Ekeland variational principle for a set-valued map involving the Clarke normal cone, J. Math. Anal. Appl., 316, 346-356 (2006) · Zbl 1089.49031 · doi:10.1016/j.jmaa.2005.04.044
[25] Hartley, R., On cone-efficiency, cone-convexity and cone-compactness, SIAM J. Appl. Math., 34, 211-222 (1978) · Zbl 0379.90005 · doi:10.1137/0134018
[26] Huang, XX; Yang, XQ; Teo, KL, Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications, J. Optim. Theory Appl., 123, 391-407 (2004) · doi:10.1007/s10957-004-5155-z
[27] Huong, NTT; Yao, J-C; Yen, ND, Polynomial vector variational inequalities under polynomial constraints and applications, SIAM J. Optim., 26, 1060-1071 (2016) · Zbl 1338.90399 · doi:10.1137/15M1041134
[28] Jahn, J., Vector Optimization: Theory Applications, and Extensions (2004), Berlin: Springer, Berlin · Zbl 1055.90065 · doi:10.1007/978-3-540-24828-6
[29] Jelonek, Z.; Kurdyka, K., Reaching generalized critical values of a polynomial, Math. Z., 276, 557-570 (2014) · Zbl 1288.14044 · doi:10.1007/s00209-013-1213-2
[30] Jiao, LG; Lee, JH; Zhou, YY, A hybrid approach for finding efficient solutions in vector optimization with SOS-convex polynomials, Oper. Res. Lett., 48, 188-194 (2020) · Zbl 1525.90387 · doi:10.1016/j.orl.2020.02.003
[31] Kim, DS; Mordukhovich, BS; Phạm, TS; Tuyen, NV, Existence of efficient and properly efficient solutions to problems of constrained vector optimization, Math. Program., 190, 259-283 (2021) · Zbl 1528.90246 · doi:10.1007/s10107-020-01532-y
[32] Kim, DS; Phạm, TS; Tuyen, NV, On the existence of Pareto solutions for polynomial vector optimization problems, Math. Program., 177, 321-341 (2019) · Zbl 1418.90248 · doi:10.1007/s10107-018-1271-7
[33] Lee, JH; Jiao, LG, Solving fractional multicriteria optimization problems with sum of squares convex polynomial data, J. Optim. Theory Appl., 176, 428-455 (2018) · Zbl 1390.90532 · doi:10.1007/s10957-018-1222-8
[34] Lee, JH; Jiao, LG, Finding efficient solutions for multicriteria optimization problems with SOS-convex polynomials, Taiwan. J. Math., 23, 1535-1550 (2019) · Zbl 1427.90252 · doi:10.11650/tjm/190101
[35] Lee, JH; Sisarat, N.; Jiao, LG, Multi-objective convex polynomial optimization and semidefinite programming relaxations, J. Glob. Optim., 80, 117-138 (2021) · Zbl 1475.90093 · doi:10.1007/s10898-020-00969-x
[36] Liu, DY; Hu, R.; Fang, YP, Solvability of a regular polynomial vector optimization problem without convexity, Optimization (2021) · Zbl 1517.90137 · doi:10.1080/02331934.2021.1990285
[37] Luc, DT, Theory of Vector Optimization (1989), Berlin: Springer, Berlin · doi:10.1007/978-3-642-50280-4
[38] Magron, V.; Henrion, D.; Lasserre, JB, Approximating Pareto curves using semidefinite relaxations, Oper. Res. Lett., 42, 432-437 (2014) · Zbl 1408.90273 · doi:10.1016/j.orl.2014.07.007
[39] Magron, V.; Henrion, D.; Lasserre, JB, Semidefinite approximations of projections and polynomial images of semialgebraic sets, SIAM J. Optim., 25, 2143-2164 (2015) · Zbl 1327.14241 · doi:10.1137/140992047
[40] Milnor, J., Singular Points of Complex Hypersurfaces, volume 61 of Annals of Mathematics Studies (1968), Princeton: Princeton University Press, Princeton · Zbl 0184.48405
[41] Nie, J., Yang, Z.: The multi-objective polynomial optimization. (2021) arXiv:2108.04336
[42] Pataki, G., On the closedness of the linear image of a closed convex cone, Math. Oper. Res., 32, 395-412 (2007) · Zbl 1341.90146 · doi:10.1287/moor.1060.0242
[43] Phạm, T.S.: Tangencies and polynomial optimization. (2019) arXiv:1902.06041v2
[44] Sawaragi, Y.; Nakayama, H.; Tanino, T., Theory of Multiobjective Optimization (1985), Orlando: Academic Press, Inc., Orlando · Zbl 0566.90053
[45] van den Dries, L.; Miller, C., Geometric categories and o-minimal structures, Duke Math. J., 84, 497-540 (1996) · Zbl 0889.03025
[46] Yen, ND, An introduction to vector variational inequalities and some new results, Acta Math. Vietnam, 41, 505-529 (2016) · Zbl 1346.90772 · doi:10.1007/s40306-015-0168-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.