×

Using spherical indentation to determine creep behavior with considering empirical friction coefficient. (English) Zbl 07849971

Summary: Indentation testing is a common technique for characterizing the mechanical properties of materials. When it comes to assessing the yield behavior of metals, conical indentation is often favored due to its ability to induce significant plastic deformation at relatively shallow indentation depths. On the other hand, spherical indentation is typically chosen for evaluating metal creep behavior, as it helps minimize the influence of plastic deformation on creep measurements. In spherical indentation tests, the friction at the contact interface is particularly crucial, given the larger contact area and more pronounced slip zones. However, accurately determining the friction coefficient at the contact interface is a complex multi-scale challenge, with the exact coefficient varying based on specific testing conditions and surface treatments. Consequently, empirical friction coefficients are frequently employed, often without thorough justification. In this work, we proposed Bayesian inference method for obtaining the creep constitutive behavior of alloys through spherical indentation tests. Our model considers not only the complexity of creep law, but also the indentation friction, which is unable to consider in most spherical indentation tests with traditional treatment. By using experimental data of spherical indentation tests on 310S stainless steel and pure nickel alloy from literature, present study demonstrates the effectiveness of the Bayesian inference approach, with the inferred constitutive models exhibiting well agreement with uniaxial creep behavior. Furthermore, the method considers the friction coefficient as an extra factor in inferring creep constitutive behavior from indentation tests.

MSC:

74M15 Contact in solid mechanics
74M10 Friction in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Ababou, R.; Bagtzoglou, A. C.; Wood, E. F., On the condition number of covariance matrices in kriging, estimation, and simulation of random fields, Math. Geol., 26, 99-133, 1994 · Zbl 0970.86543
[2] Betancourt, M., A Conceptual Introduction to Hamiltonian Monte Carlo, 2018
[3] Bower, A. F.; Fleck, N. A.; Needleman, A.; Ogbonna, N., Indentation of a power law creeping solid, Proc. Math. Phys. Sci., 441, 97-124, 1993 · Zbl 0807.73064
[4] Burley, M.; Campbell, J. E.; Dean, J.; Clyne, T. W., A methodology for obtaining primary and secondary creep characteristics from indentation experiments, using a recess, Int. J. Mech. Sci., 176, Article 105577 pp., 2020
[5] Castillo, A.; Kalidindi, S. R., A bayesian framework for the estimation of the single crystal elastic parameters from spherical indentation stress-strain measurements, Front. Mater., 6, 136, 2019
[6] Chu, S.; Li, J., Impression creep; a new creep test, J. Mater. Sci., 12, 2200-2208, 1977
[7] Clyne, T. W.; Campbell, J. E.; Burley, M.; Dean, J., Profilometry‐based inverse finite element method indentation plastometry, Adv. Eng. Mater., 23, Article 2100437 pp., 2021
[8] Dean, J.; Campbell, J.; Aldrich-Smith, G.; Clyne, T. W., A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data, Acta Mater., 80, 56-66, 2014
[9] Fernandez-Zelaia, P.; Roshan Joseph, V.; Kalidindi, S. R.; Melkote, S. N., Estimating mechanical properties from spherical indentation using Bayesian approaches, Mater. Des., 147, 92-105, 2018
[10] Gardner, J. R.; Pleiss, G.; Bindel, D.; Weinberger, K. Q.; Wilson, A. G., GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration, 2021
[11] Ginder, R. S.; Nix, W. D.; Pharr, G. M., A simple model for indentation creep, J. Mech. Phys. Solid., 112, 552-562, 2018
[12] Hoffman, M. D.; Gelman, A., The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, 2011
[13] Iracheta, O.; Bennett, C. J.; Sun, W., A holistic inverse approach based on a multi-objective function optimisation model to recover elastic-plastic properties of materials from the depth-sensing indentation test, J. Mech. Phys. Solid., 128, 1-20, 2019
[14] Joshi, A.; Thakolkaran, P.; Zheng, Y.; Escande, M.; Flaschel, M.; De Lorenzis, L.; Kumar, S., Bayesian-EUCLID: discovering hyperelastic material laws with uncertainties, Comput. Methods Appl. Mech. Eng., 398, Article 115225 pp., 2022 · Zbl 1507.74073
[15] Kim, M.; Marimuthu, K. P.; Jung, S.; Lee, H., Contact size-independent method for estimation of creep properties with spherical indentation, Comput. Mater. Sci., 113, 211-220, 2016
[16] Li, S.; Purdy, D.; Brett, S. J.; Deng, D.; Shibli, A.; Sun, W., Effect of indentation depth in impression creep test: conversion relationships and correction functions, Mater. A. T. High. Temp., 38, 358-367, 2021
[17] Nogning Kamta, P.; Mejias, A.; Roudet, F.; Louis, G.; Touzin, M.; Chicot, D., Indentation creep analysis of T22 and T91 chromium based steels, Mater. Sci. Eng., A, 652, 315-324, 2016
[18] Ogbonna, N.; Fleck, N. A.; Cocks, A. C.F., Transient creep analysis of ball indentation, Int. J. Mech. Sci., 37, 1179-1202, 1995 · Zbl 0850.73266
[19] Park, I.; Grandhi, R. V., A Bayesian statistical method for quantifying model form uncertainty and two model combination methods, Reliab. Eng. Syst. Saf., 129, 46-56, 2014
[20] Phani, P. S.; Oliver, W. C.; Pharr, G. M., Influences of elasticity on the measurement of power law creep parameters by nanoindentation, J. Mech. Phys. Solid., 154, Article 104527 pp., 2021
[21] Rappel, H.; Beex, L. A.A.; Hale, J. S.; Noels, L.; Bordas, S. P.A., A tutorial on bayesian inference to identify material parameters in solid Mechanics, Arch. Comput. Methods Eng., 27, 361-385, 2020
[22] Rasmussen, C. E.; Williams, C. K.I., Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning, 2006, MIT Press: MIT Press Cambridge, Mass · Zbl 1177.68165
[23] Sakane, M.; Hirano, A.; Hamada, N.; Hoya, Y.; Oka, T.; Furukawa, M.; Itoh, T., A new extraction method of creep exponents and coefficients from an indentation creep test by multiaxial stress analysis, Theor. Appl. Fract. Mech., 107, Article 102522 pp., 2020
[24] Salvatier, J.; Wiecki, T. V.; Fonnesbeck, C., Probabilistic programming in Python using PyMC3, PeerJ Computer Science, 2, e55, 2016
[25] Sanchez-Camargo, C.-M.; Hor, A.; Mabru, C., A robust inverse analysis method for elastoplastic behavior identification using the true geometry modeling of Berkovich indenter, Int. J. Mech. Sci., 171, Article 105370 pp., 2020
[26] Schulz, E.; Speekenbrink, M.; Krause, A., A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions, J. Math. Psychol., 85, 1-16, 2018 · Zbl 1416.62648
[27] Shrestha, T.; Basirat, M.; Charit, I.; Potirniche, G. P.; Rink, K. K.; Sahaym, U., Creep deformation mechanisms in modified 9Cr-1Mo steel, J. Nucl. Mater., 423, 110-119, 2012
[28] Su, C.; Herbert, E. G.; Sohn, S.; LaManna, J. A.; Oliver, W. C.; Pharr, G. M., Measurement of power-law creep parameters by instrumented indentation methods, J. Mech. Phys. Solid., 61, 517-536, 2013
[29] Taljat, B.; Pharr, G. M., Development of pile-up during spherical indentation of elastic-plastic solids, Int. J. Solid Struct., 41, 3891-3904, 2004 · Zbl 1079.74592
[30] Wang, M.; Wu, J., Identification of plastic properties of metal materials using spherical indentation experiment and Bayesian model updating approach, Int. J. Mech. Sci., 151, 733-745, 2019
[31] Xiao, X.; Yu, L., Effect of primary creep on the relationship between indentation and uniaxial creep: a theoretical model, Int. J. Solid Struct., 206, 114-123, 2020
[32] Yan, J.; Karlsson, A. M.; Chen, X., Determining plastic properties of a material with residual stress by using conical indentation, Int. J. Solid Struct., 44, 3720-3737, 2007 · Zbl 1178.74072
[33] Yang, S.; Lu, W.; Ling, X., Spherical indentation creep characteristics and local deformation analysis of 310S stainless steel, Eng. Fail. Anal., 118, Article 104946 pp., 2020
[34] Zhang, Y.; Hart, J. D., The effect of prior parameters in a bayesian approach to inferring material properties from experimental measurements, J. Eng. Mech., 149, Article 04023007 pp., 2023
[35] Zhang, Y.; Hart, J. D.; Needleman, A., Identification of plastic properties from conical indentation using a bayesian-type statistical approach, J. Appl. Mech., 86, Article 011002 pp., 2019
[36] Zhang, Y.; Needleman, A., On the identification of power-law creep parameters from conical indentation, Proc. R. Soc. A A., 477, Article 20210233 pp., 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.