×

Analysis of finite difference schemes for Volterra integro-differential equations involving arbitrary order derivatives. (English) Zbl 1518.65146


MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45D05 Volterra integral equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Amirali, I.; Acar, H., A novel approach for the stability inequalities for high-order Volterra delay integro-differential equation, J. Appl. Math. Comput. (2022) · Zbl 1509.65148 · doi:10.1007/s12190-022-01761-8
[2] Carpinteri, A.; Chiaia, B.; Cornetti, P., Static-kinematic duality and the principle of virtual work in the mechanics of fractal media, Comput. Methods Appl. Mech. Eng., 191, 3-19 (2001) · Zbl 0991.74013 · doi:10.1016/S0045-7825(01)00241-9
[3] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (2010), Berlin: Springer, Berlin · Zbl 1215.34001
[4] Gao, GH; Sun, ZZ; Zhang, HW, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50 (2014) · Zbl 1349.65088 · doi:10.1016/j.jcp.2013.11.017
[5] Gordji, ME; Baghani, H.; Baghani, O., On existence and uniqueness of solutions of a nonlinear integral equation, J. Appl. Math. (2011) · Zbl 1227.45004 · doi:10.1155/2011/743923
[6] Hamoud, AA; Ghadle, KP; Issa, MB; Giniswamy, H., Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, Int. J. Appl. Math., 31, 3, 333-348 (2018) · doi:10.12732/ijam.v31i3.3
[7] Hamoud, AA; Ghadle, KP, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5, 1, 58-69 (2019)
[8] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), San Diego: Elsevier, San Diego · Zbl 1092.45003
[9] Larsson, S.; Racheva, M.; Saedpanah, F., Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity, Comput. Methods, Appl. Mech. Eng., 283, 196-209 (2015) · Zbl 1423.74900 · doi:10.1016/j.cma.2014.09.018
[10] Lepik, U., Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput., 214, 2, 468-478 (2009) · Zbl 1170.65106
[11] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 2, 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[12] Momani, SM, Local and global existence theorems on fractional integro-differential equations, J. Fract. Calc., 18, 81-86 (2000) · Zbl 0967.45004
[13] Momani, S.; Noor, MA, Numerical methods for fourth-order fractional integro-differential equations, Appl. Math. Comput., 182, 1, 754-760 (2006) · Zbl 1107.65120
[14] Panda, A.; Santra, S.; Mohapatra, J., Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations, J. Appl. Math. Comput. (2021) · Zbl 1490.35523 · doi:10.1007/s12190-021-01613-x
[15] Panda, A.; Mohapatra, J.; Amirali, I., A second-order post-processing technique for singularly perturbed volterra integro-differential equations, Mediterr. J. Math., 18, 6, 1-25 (2021) · Zbl 07418711 · doi:10.1007/s00009-021-01873-8
[16] Podlubny, I., Fractional Differential Equations (1999), New York: Academie Press, New York · Zbl 0924.34008
[17] Rawashdeh, EA, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176, 1-6 (2006) · Zbl 1100.65126
[18] Santra, S.; Mohapatra, J., Numerical analysis of Volterra integro-differential equations with Caputo fractional derivative, Iran. J. Sci. Technol. Trans. Sci., 45, 1815-1824 (2021) · doi:10.1007/s40995-021-01180-7
[19] Santra, S.; Mohapatra, J., A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type, J. Comput. Appl. Math. (2021) · Zbl 1496.65128 · doi:10.1016/j.cam.2021.113746
[20] Santra, S.; Panda, A.; Mohapatra, J., A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations, J. Appl. Math. Comput. (2021) · Zbl 07597412 · doi:10.1007/s12190-021-01675-x
[21] Sayevand, K.; Fardi, M.; Moradi, E.; Boroujeni, FH, Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order, Alex. Eng. J., 52, 807-812 (2013) · doi:10.1016/j.aej.2013.08.008
[22] Stynes, M.; O’Riordan, E.; Gracia, JL, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 2, 1057-1079 (2017) · Zbl 1362.65089 · doi:10.1137/16M1082329
[23] Wongyat, T.; Sintunavarat, W., The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fractional differential equations via w-distances, Adv. Differ. Equ., 1, 211 (2017) · Zbl 1422.45002 · doi:10.1186/s13662-017-1267-2
[24] Yapman, Ö.; Amiraliyev, GM; Amirali, I., Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay, J. Comput. Appl. Math., 355, 301-309 (2019) · Zbl 1415.65170 · doi:10.1016/j.cam.2019.01.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.