×

Apollonian circle packings: dynamics and number theory. (English) Zbl 1307.11099

This is a review paper dedicated to recent results on the counting problems for Apollonian circle packings. The construction of Apollonian circle packing follows form the classical Apollonius’s theorem.
{Theorem (Apollonius of Perga, 262-190 BC).} Given 3 mutually tangent circles in the plane, there exist exactly two circles tangent to all three.
The author presents a modern proof of Apollonius’s theorem. It is turn out that the counting problems of Apollonian circle packings is related to problems in dynamics and number theory for thin groups. In order to construct an Apollonian circle packing, we begin with four mutually tangent circles in the plane and keeping adding new circles tangent to three of the previous circles indefinitely.
We call an Apollonian circle packing \(\mathcal{P}\) integral if every circle in \(\mathcal{P}\) has a integral curvature. The existence of integral Apollonian circle packing is insured by Descartes’s theorem. We say that \(\mathcal{P}\) is primitive if \(\operatorname{gcd}_{C \in \mathcal{P}}\text{{curv}}(C)=1,\) where \(\text{{curv}}(C)\) is the curvature of \(C\). The circle is prime if its curvature is prime. P. Sarnak [Am. Math. Mon. 118, No. 4, 291–306 (2011; Zbl 1260.52011)] proved that there are infinitely many prime circles.
For a bounded Apollonian circle packing \(\mathcal{P}\), there are only finitely many circles of radius bigger than a given number. Hence the following counting function is well-defined for any \(T>0\): \[ N_{\mathcal{P}}(T)=\Big|\Big\{C \in \mathcal{P} : \text{{curv}}(C) \leq T\Big\}\Big|. \] For any bounded primitive integral Apollonian packing \(\mathcal{P}\), we introduce \[ \Pi_{\mathcal{P}}(T)=\Big|\Big\{\text{{prime}}~~C \in \mathcal{P} : \text{{curv}}(C) \leq T\Big\}\Big|. \] The author presents asymptotic formulas of \(N_{\mathcal{P}}(T)\) and \(\Pi_{\mathcal{P}}(T)\) as \(T\longrightarrow +\infty\).

MSC:

11N45 Asymptotic results on counting functions for algebraic and topological structures
37F35 Conformal densities and Hausdorff dimension for holomorphic dynamical systems
22E40 Discrete subgroups of Lie groups
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)

Citations:

Zbl 1260.52011

References:

[1] Babillot M.: On the mixing property for hyperbolic systems. Israel J. Math. 129, 61–76 (2002) · Zbl 1053.37001 · doi:10.1007/BF02773153
[2] J. Bourgain, Integral Apollonian circle packings and prime curvatures, preprint, arXiv:1105.5127 . · Zbl 1281.52011
[3] J. Bourgain, Some Diophantine applications of the theory of group expansion, In: Thin Groups and Superstrong Approximation, (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, to appear (2014).
[4] Bourgain J., Fuchs E.: A proof of the positive density conjecture for integer Apollonian packings. J. Amer. Math. Soc. 24, 945–967 (2011) · Zbl 1228.11035 · doi:10.1090/S0894-0347-2011-00707-8
[5] Bourgain J., Gamburd A., Sarnak P.: Affine linear sieve, expanders, and sum-product. Invent. Math. 179, 559–644 (2010) · Zbl 1239.11103 · doi:10.1007/s00222-009-0225-3
[6] Bourgain J., Gamburd A., Sarnak P.: Generalization of Selberg’s 3/16 theorem and affine sieve. Acta Math. 207, 255–290 (2011) · Zbl 1276.11081 · doi:10.1007/s11511-012-0070-x
[7] J. Bourgain and A. Kontorovich, On the local-global conjecture for integral Apollonian gaskets, preprint, arXiv:1205.4416 ; Invent. Math., to appear. · Zbl 1301.11046
[8] Boyd D.W.: The sequence of radii of the Apollonian packing. Math. Comp. 39, 249–254 (1982) · Zbl 0492.52009 · doi:10.1090/S0025-5718-1982-0658230-7
[9] Breuillard E., Green B., Tao T.: Approximate subgroups of linear groups. Geom. Funct. Anal. 21, 774–819 (2011) · Zbl 1229.20045 · doi:10.1007/s00039-011-0122-y
[10] Burger M.: Horocycle flow on geometrically finite surfaces. Duke Math. J. 61, 779–803 (1990) · Zbl 0723.58041 · doi:10.1215/S0012-7094-90-06129-0
[11] Burger M., Sarnak P.: Ramanujan duals. II. Invent. Math. 106, 1–11 (1991) · Zbl 0774.11021 · doi:10.1007/BF01243900
[12] Chen J.R.: On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16, 157–176 (1973) · Zbl 0319.10056
[13] Clozel L.: Démonstration de la conjecture $${\(\backslash\)tau}$$ {\(\tau\)} . Invent. Math. 151, 297–328 (2003) · Zbl 1025.11012 · doi:10.1007/s00222-002-0253-8
[14] Coxeter H.S.M.: The problem of Apollonius. Amer. Math. Monthly 75, 5–15 (1968) · Zbl 0161.17502 · doi:10.2307/2315097
[15] Duke W., Rudnick Z., Sarnak P.: Density of integer points on affine homogeneous varieties. Duke Math. J. 71, 143–179 (1993) · Zbl 0798.11024 · doi:10.1215/S0012-7094-93-07107-4
[16] Eriksson N., Lagarias J.C.: Apollonian circle packings: number theory. II. Spherical and hyperbolic packings. Ramanujan J. 14, 437–469 (2007) · Zbl 1165.11057 · doi:10.1007/s11139-007-9052-6
[17] Eskin A., McMullen C.T.: Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71, 181–209 (1993) · Zbl 0798.11025 · doi:10.1215/S0012-7094-93-07108-6
[18] Flaminio L., Spatzier R.J.: Geometrically finite groups, Patterson–Sullivan measures and Ratner’s theorem. Invent. Math. 99, 601–626 (1990) · Zbl 0667.57014 · doi:10.1007/BF01234433
[19] Fuchs E.: Strong approximation in the Apollonian group. J. Number Theory 131, 2282–2302 (2011) · Zbl 1259.11066 · doi:10.1016/j.jnt.2011.05.010
[20] Fuchs E.: Counting problems in Apollonian packings. Bull. Amer. Math. Soc. (N.S.) 50, 229–266 (2013) · Zbl 1309.11058 · doi:10.1090/S0273-0979-2013-01401-0
[21] Fuchs E., Sanden K.: Some experiments with integral Apollonian circle packings. Exp. Math. 20, 380–399 (2011) · Zbl 1259.11065 · doi:10.1080/10586458.2011.565255
[22] Gorodnik A., Nevo A.: Lifting, restricting and sifting integral points on affine homogeneous varieties. Compos. Math. 148, 1695–1716 (2012) · Zbl 1307.11078 · doi:10.1112/S0010437X12000516
[23] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: number theory, J. Number Theory, 100 (2003), 1–45. · Zbl 1026.11058
[24] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: geometry and group theory. I. The Apollonian group, Discrete Comput. Geom., 34 (2005), 547–585. · Zbl 1085.52010
[25] B. Green, Approximate groups and their applications: work of Bourgain, Gamburd, Helfgott and Sarnak, Current Events Bulletin of the AMS, 2010, preprint, arXiv:0911.3354 .
[26] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. · Zbl 0298.10026
[27] H.A. Helfgott, Growth and generation in SL2( $${\(\backslash\)mathbb{Z}/ p\(\backslash\)mathbb{Z}}$$ Z / p Z ), Ann. of Math. (2), 167 (2008), 601–623.
[28] Howe R.E., Moore C.C.: Asymptotic properties of unitary representations. J. Funct. Anal. 32, 72–96 (1979) · Zbl 0404.22015 · doi:10.1016/0022-1236(79)90078-8
[29] Kazhdan D.A.: Connection of the dual space of a group with the structure of its close subgroups. Funct. Anal. Appl. 1, 63–65 (1967) · Zbl 0168.27602 · doi:10.1007/BF01075866
[30] Kontorovich A., Oh H.: Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. J. Amer. Math. Soc. 24, 603–648 (2011) · Zbl 1235.22015 · doi:10.1090/S0894-0347-2011-00691-7
[31] Lax P.D., Phillips R.S.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46, 280–350 (1982) · Zbl 0497.30036 · doi:10.1016/0022-1236(82)90050-7
[32] Lee M., Oh H.: Effective circle count for Apollonian packings and closed horospheres. Geom. Funct. Anal. 23, 580–621 (2013) · Zbl 1276.52019 · doi:10.1007/s00039-013-0217-8
[33] Margulis G.A.: Explicit constructions of expanders. Problems Inform. Transmission 9, 325–332 (1973)
[34] G.A. Margulis, On Some Aspects of the Theory of Anosov Systems. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows. Translated from the Russian by Valentina Vladimirovna Szulikowska, Springer Monogr. Math., Springer-Verlag, 2004. · Zbl 1140.37010
[35] C.R. Matthews, L.N. Vaserstein and B. Weisfeiler, Congruence properties of Zariski-dense subgroups. I, Proc. London Math. Soc. (3), 48 (1984), 514–532. · Zbl 0551.20029
[36] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0819.28004
[37] Mauldin R.D., Urbański M.: Dimension and measures for a curvilinear Sierpinski gasket or Apollonian packings. Adv. Math. 136, 26–38 (1998) · Zbl 0934.28002 · doi:10.1006/aima.1998.1732
[38] McMullen C.T.: Hausdorff dimension and conformal dynamics. III. Computation of dimension. Amer. J. Math. 120, 691–721 (1998) · Zbl 0953.30026
[39] A. Mohammadi and H. Oh, Matrix coefficients, counting and primes for geometrically finite groups, preprint, arXiv:1208.4139 ; J. Eur. Math. Soc. (JEMS), to appear.
[40] D. Mumford, C. Series and D. Wright, Indra’s Pearls, Cambridge Univ. Press, New York, 2002. · Zbl 1141.00002
[41] Nevo A., Sarnak P.: Prime and almost prime integral points on principal homogeneous spaces. Acta Math. 205, 361–402 (2010) · Zbl 1233.11102 · doi:10.1007/s11511-010-0057-4
[42] H. Oh, Dynamics on geometrically finite hyperbolic manifolds with applications to Apollonian circle packings and beyond, In: Proc. of International Congress of Mathematicians, Hyderabad, 2010, Vol. III, Hindustan Book Agency, New Delhi, 2010, pp. 1308–1331. · Zbl 1252.37005
[43] H. Oh, Harmonic analysis, ergodic theory and counting for thin groups, In: Thin Groups and Superstrong Approximation, (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, to appear (2014). · Zbl 1326.20001
[44] Oh H., Shah N.A.: The asymptotic distribution of circles in the orbits of Kleinian groups. Invent. Math. 187, 1–35 (2012) · Zbl 1235.52033 · doi:10.1007/s00222-011-0326-7
[45] Oh H., Shah N.A.: Equidistribution and counting for orbits of geometrically finite hyperbolic groups. J. Amer. Math. Soc. 26, 511–562 (2013) · Zbl 1334.22011 · doi:10.1090/S0894-0347-2012-00749-8
[46] S.J. Patterson, The limit set of a Fuchsian group, Acta Math., 136 (1976), 241–273. · Zbl 0336.30005
[47] L. Pyber and E. Szabó, Growth in finite simple groups of Lie type of bounded rank, preprint, arXiv:1005.1858 . · Zbl 1371.20010
[48] J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Grad. Texts in Math., 149, Springer-Verlag, 1994. · Zbl 0809.51001
[49] T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), 95, Math. Soc. France, 2003.
[50] Rudolph D.: Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold. Ergodic Theory Dynam. Systems 2, 491–512 (1982) · Zbl 0525.58025
[51] Salehi Golsefidy A., Sarnak P.: The affine sieve. J. Amer. Math. Soc. 26, 1085–1105 (2013) · Zbl 1283.20055 · doi:10.1090/S0894-0347-2013-00764-X
[52] Salehi Golsefidy A., Varjú P.: Expansion in perfect groups. Geom. Funct. Anal. 22, 1832–1891 (2012) · Zbl 1284.20044 · doi:10.1007/s00039-012-0190-7
[53] Sarnak P.: Integral Apollonian packings. Amer. Math. Monthly 118, 291–306 (2011) · Zbl 1260.52011 · doi:10.4169/amer.math.monthly.118.04.291
[54] P. Sarnak, Growth in linear groups, In: Thin Groups and Superstrong Approximation, (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, to appear (2014).
[55] Stratmann B., Urbański M.: The box-counting dimension for geometrically finite Kleinian groups. Fund. Math. 149, 83–93 (1996) · Zbl 0847.20046
[56] Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math. 50, 171–202 (1979) · Zbl 0439.30034 · doi:10.1007/BF02684773
[57] Sullivan D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153, 259–277 (1984) · Zbl 0566.58022 · doi:10.1007/BF02392379
[58] I. Vinogradov, Effective bisector estimate with applications to Apollonian circle packings, preprint, arXiv:1204.5498 . · Zbl 1296.11088
[59] D. Winter, Mixing of frame flow for rank one locally symmetric spaces and measure classification, preprint, 2013.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.