×

Differential equations with multiple sign changing convolution coefficients. (English) Zbl 1489.34037

In this paper, the author considers the following nonlocal differential equation \[ -A((a\ast u^q)(1))u''(t)=\lambda B((b\ast u^p)(1))f(t,u(t)),~~ t\in (0,1), \] where \(\lambda>0\) is a parameter, \(p, q \in (1, +\infty)\), \(\ast\) denotes the finite convolution and \(A\), \(B \) are continuous functions. A model case is the equation \[ -A\Big(\int_0^1(u(r))^q dr\Big)u''(t)=\lambda B\Big(\int_0^1(u(r))^p dr\Big)f(t,u(t)),~~ t\in (0,1). \]
By using a nonstandard order cone of the form \[ \mathcal{K}:=\Big\{u\in \mathcal{C}([0,1]): u\ge 0, (a\ast u)(1)\ge C_0\|u\|, \min_{t\in [c,d]}u(t)\ge \eta_0\|u\|\Big\} \] for the constants \(0\le c<d\le 1,\) \(C_0\in (0,1],\) \(\eta_0\in (0,1],\) together with topological fixed point theory, the existence of a positive solution is studied for boundary value problems consisting of the above equations equipped with a variety of boundary conditions. The importance of the use of a nonstandard order cone lies in fact that some assumptions which are used in the literature are eliminated or weakened, with the most important being that the results are achieved without assuming, as usually, that the coefficient functions are strictly positive, but may change sign and, in particular, may be equal to zero on a set of positive measure.

MSC:

34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
44A35 Convolution as an integral transform
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Afrouzi, G. A., Chung, N. T. and Shakeri, S., Existence and non-existence results for nonlocal elliptic systems via sub-supersolution method, Funkcial. Ekvac.59 (2016) 303-313. · Zbl 1365.35028
[2] Alves, C. O. and Covei, D.-P., Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method, Nonlinear Anal. Real World Appl.23 (2015) 1-8. · Zbl 1319.35057
[3] Azzouz, N. and Bensedik, A., Existence results for an elliptic equation of Kirchhoff-type with changing sign data, Funkcial. Ekvac.55 (2012) 55-66. · Zbl 1248.35065
[4] Biler, P. and Nadzieja, T., A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math.66 (1993) 131-145. · Zbl 0818.35046
[5] Biler, P. and Nadzieja, T., Nonlocal parabolic problems in statistical mechanics, Nonlinear Anal.30 (1997) 5343-5350. · Zbl 0892.35073
[6] Boulaaras, S., Existence of positive solutions for a new class of Kirchhoff parabolic systems, Rocky Mountain J. Math.50 (2020) 445-454. · Zbl 1443.35075
[7] Boulaaras, S. and Guefaifia, R., Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters, Math. Methods Appl. Sci.41 (2018) 5203-5210. · Zbl 1397.35096
[8] Cabada, A., Infante, G. and Tojo, F., Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Topol. Methods Nonlinear Anal.47 (2016) 265-287. · Zbl 1366.45005
[9] A. Cabada, G. Infante and F. A. F. Tojo, Nonlinear perturbed integral equations related to nonlocal boundary value problems, Fixed Point Theory 19 (2018) 65-92. · Zbl 1392.45010
[10] Caglioti, E., Lions, P.-L., Marchioro, C. and Pulvirenti, M., A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys.143 (1992) 501-525. · Zbl 0745.76001
[11] Chung, N. T., Existence of positive solutions for a class of Kirchhoff type systems involving critical exponents, Filomat33 (2019) 267-280. · Zbl 1499.35249
[12] Cianciaruso, F., Infante, G. and Pietramala, P., Solutions of perturbed Hammerstein integral equations with applications, Nonlinear Anal. Real World Appl.33 (2017) 317-347. · Zbl 1351.45006
[13] Corrêa, F. J. S. A., On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal.59 (2004) 1147-1155. · Zbl 1133.35043
[14] Corrêa, F. J. S. A., Menezes, S. D. B. and Ferreira, J., On a class of problems invovling a nonlocal operator, Appl. Math. Comput.147 (2004) 475-489. · Zbl 1086.35038
[15] do Ó, J. M., Lorca, S., Sánchez, J. and Ubilla, P., Positive solutions for some nonlocal and nonvariational elliptic systems, Complex Var. Elliptic Equ.61 (2016) 297-314. · Zbl 1338.35158
[16] Ding, X., Feng, Y. and Bu, R., Existence, nonexistence and multiplicity of positive solutions for nonlinear fractional differential equations, J. Appl. Math. Comput.40 (2012) 371-381. · Zbl 1302.34005
[17] Fey, K. and Foss, M., Morrey regularity results for asymptotically convex variational problems with \((p,q)\) growth, J. Differential Equations246 (2009) 4519-4551. · Zbl 1162.49041
[18] Goodrich, C. S., Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett.23 (2010) 1050-1055. · Zbl 1204.34007
[19] Goodrich, C. S., Existence of a positive solution to systems of differential equations of fractional order, Comput. Math. Appl.62 (2011) 1251-1268. · Zbl 1253.34012
[20] Goodrich, C. S., On nonlocal BVPs with nonlinear boundary conditions with asymptotically sublinear or superlinear growth, Math. Nachr.285 (2012) 1404-1421. · Zbl 1252.34032
[21] Goodrich, C. S., On nonlinear boundary conditions satisfying certain asymptotic behavior, Nonlinear Anal.76 (2013) 58-67. · Zbl 1264.34030
[22] Goodrich, C. S., Semipositone boundary value problems with nonlocal, nonlinear boundary conditions, Adv. Differential Equations20 (2015) 117-142. · Zbl 1318.34034
[23] Goodrich, C. S., Coercive nonlocal elements in fractional differential equations, Positivity21 (2017) 377-394. · Zbl 1367.26017
[24] Goodrich, C. S., The effect of a nonstandard cone on existence theorem applicability in nonlocal boundary value problems, J. Fixed Point Theory Appl.19 (2017) 2629-2646. · Zbl 1390.45015
[25] Goodrich, C. S., New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function, J. Differential Equations264 (2018) 236-262. · Zbl 1379.35097
[26] Goodrich, C. S., Radially symmetric solutions of elliptic PDEs with uniformly negative weight, Ann. Mat. Pura Appl. (4)197 (2018) 1585-1611. · Zbl 1412.35144
[27] Goodrich, C. S., Coercive functionals and their relationship to multiplicity of solution to nonlocal boundary value problems, Topol. Methods Nonlinear Anal.54 (2019) 406-426. · Zbl 1436.45005
[28] Goodrich, C. S., A topological approach to nonlocal elliptic partial differential equations on an annulus, Math. Nachr.294 (2021) 286-309. · Zbl 1525.34047
[29] Goodrich, C. S. and Lizama, C., A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Israel J. Math.236 (2020) 533-589. · Zbl 1508.47080
[30] Goodrich, C. S. and Lizama, C., Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst. Series A.40 (2020) 4961-4983. · Zbl 1440.42029
[31] C. S. Goodrich and C. Lizama, Existence and monotonicity of nonlocal boundary value problems: The one-dimensional case, Proc. Roy. Soc. Edinburgh Sect. A, doi: 10.1017/prm.2020.90. · Zbl 1508.47080
[32] Goodrich, C. S. and Lyons, B., Nonlocal difference equations with sign-changing coefficients, Appl. Math. Lett.106 (2020) 106371. · Zbl 1439.39006
[33] Goodrich, C. S., Ragusa, M. A. and Scapellato, A., Partial regularity of solutions to \(p(x)\)-Laplacian PDEs with discontinuous coefficients, J. Differential Equations268 (2020) 5440-5468. · Zbl 1436.35206
[34] Goodrich, C. S. and Peterson, A. C., Discrete Fractional Calculus, (2015), https://doi.org/10.1007/978-3-319-25562-0. · Zbl 1350.39001
[35] Graef, J., Kong, L. and Wang, H., A periodic boundary value problem with vanishing Green’s function, Appl. Math. Lett.21 (2008) 176-180. · Zbl 1135.34307
[36] Graef, J. and Webb, J. R. L., Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal.71 (2009) 1542-1551. · Zbl 1189.34034
[37] Granas, A. and Dugundji, J., Fixed Point Theory, (Springer-Verlag, New York, 2003). · Zbl 1025.47002
[38] Guo, D. and Lakshmikantham, V., Nonlinear problems in abstract cones (Academic Press, Boston, 1988). · Zbl 0661.47045
[39] Infante, G., Nonzero positive solutions of nonlocal elliptic systems with functional BCs, J. Elliptic Parabol. Equ.5 (2019) 493-505. · Zbl 1433.35072
[40] Infante, G., Eigenvalues of elliptic functional differential systems via a Birkhoff-Kellogg type theorem, Mathematics (2021), 9, 4.
[41] Infante, G. and Pietramala, P., Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations, Nonlinear Anal.71 (2009) 1301-1310. · Zbl 1169.45001
[42] Infante, G. and Pietramala, P., A third order boundary value problem subject to nonlinear boundary conditions, Math. Bohem.135 (2010) 113-121. · Zbl 1224.34036
[43] Infante, G. and Pietramala, P., Multiple nonnegative solutions of systems with coupled nonlinear boundary conditions, Math. Methods Appl. Sci.37 (2014) 2080-2090. · Zbl 1312.34060
[44] Infante, G. and Pietramala, P., Nonzero radial solutions for a class of elliptic systems with nonlocal BCs on annular domains, NoDEA Nonlinear Differential Equations Appl.22 (2015) 979-1003. · Zbl 1327.45004
[45] Infante, G., Pietramala, P. and Tenuta, M., Existence and localization of positive solutions for a nonlocal BVP arising in chemical reactor theory, Commun. Nonlinear Sci. Numer. Simul.19 (2014) 2245-2251. · Zbl 1457.34043
[46] Jankowski, T., Positive solutions to fractional differential equations involving Stieltjes integral conditions, Appl. Math. Comput.241 (2014) 200-213. · Zbl 1334.34058
[47] Jia, Y. and Zhang, X., Positive solutions for a class of fractional differential equation multi-point boundary value problems with changing sign nonlinearity, J. Appl. Math. Comput.47 (2015) 15-31. · Zbl 1325.34009
[48] Karakostas, G. L. and Tsamatos, P. Ch., Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal.19 (2002) 109-121. · Zbl 1071.34023
[49] Karakostas, G. L. and Tsamatos, P. Ch., Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differential Equations (2002), No. 30, 17 pp. · Zbl 0998.45004
[50] Kilbas, A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations (North-Holland, New York, 2006). · Zbl 1092.45003
[51] Liu, Y., Zhang, W. and Liu, X., A sufficient condition for the existence of a positive solution to a nonlinear fractional differential equation with the Riemann-Liouville derivative, Appl. Math. Lett.25 (2012) 1986-1992. · Zbl 1254.34012
[52] Ma, R. and Zhong, C., Existence of positive solutions for integral equations with vanishing kernels, Commun. Appl. Anal.15 (2011) 529-538. · Zbl 1236.45004
[53] Picone, M., Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine, Ann. Scuola Norm. Sup. Pisa Cl. Sci.10 (1908) 1-95. · JFM 39.0387.02
[54] Podlubny, I., Fractional Differential Equations (Academic Press, New York, 1999). · Zbl 0924.34008
[55] Rosier, C. and Rosier, L., On the global existence of solutions for a non-local problem occurring in statistical mechanics, Nonlinear Anal.60 (2005) 1509-1531. · Zbl 1065.35065
[56] Samko, S. G. and Cardoso, R. P., Integral equations of the first kind of Sonine type, Int. J. Math. and Math. Sci.57 (2003) 3609-3632. · Zbl 1034.45007
[57] Stańczy, R., Nonlocal elliptic equations, Nonlinear Anal.47 (2001) 3579-3584. · Zbl 1042.35548
[58] Vergara, V. and Zacher, R., Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal.47 (2015) 210-239. · Zbl 1317.45006
[59] Wang, Y., Wang, F. and An, Y., Existence and multiplicity of positive solutions for a nonlocal differential equation, Bound. Value Probl. (2011), 2011:5. · Zbl 1274.34070
[60] Webb, J. R. L., Boundary value problems with vanishing Green’s function, Commun. Appl. Anal.13 (2009) 587-595. · Zbl 1192.34031
[61] Webb, J. R. L., Remarks on a non-local boundary value problem, Nonlinear Anal.72 (2010) 1075-1077. · Zbl 1186.34029
[62] Webb, J. R. L. and Infante, G., Positive solutions of nonlocal boundary value problems: A unified approach, J. Lond. Math. Soc. (2)74 (2006) 673-693. · Zbl 1115.34028
[63] Whyburn, W. M., Differential equations with general boundary conditions, Bull. Amer. Math. Soc.48 (1942) 692-704. · Zbl 0061.17904
[64] Xu, J., Wei, Z. and Dong, W., Uniqueness of positive solutions for a class of fractional boundary value problems, Appl. Math. Lett.25 (2012) 590-593. · Zbl 1247.34011
[65] Yan, B. and Ma, T., The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems, Bound. Value Probl. (2016) 2016:165. · Zbl 1369.35024
[66] Yan, B. and Wang, D., The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl.442 (2016) 72-102. · Zbl 1344.35043
[67] Yang, Z., Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Anal.62 (2005) 1251-1265. · Zbl 1089.34022
[68] Yang, Z., Positive solutions of a second-order integral boundary value problem, J. Math. Anal. Appl.321 (2006) 751-765. · Zbl 1106.34014
[69] Zeidler, E., Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems (Springer, New York, 1986). · Zbl 0583.47050
[70] Zhang, S., Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl.59 (2010) 1300-1309. · Zbl 1189.34050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.