×

On Rayleigh-type formulas for a non-local boundary value problem associated with an integral operator commuting with the Laplacian. (English) Zbl 1443.47047

Summary: In this article, we prove the existence, uniqueness, and simplicity of a negative eigenvalue for a class of integral operators whose kernel is of the form \(| x - y |^\rho\), \(0 < \rho \leq 1\), \(x, y \in [-a, a]\). We also provide two different ways of producing recursive formulas for the Rayleigh functions (i.e., recursion formulas for power sums) of the eigenvalues of this integral operator when \(\rho = 1\), providing means of approximating this negative eigenvalue. These methods offer recursive procedures for dealing with the eigenvalues of a one-dimensional Laplacian with non-local boundary conditions which commutes with an integral operator having a harmonic kernel. The problem emerged in recent work by the second author [Appl. Comput. Harmon. Anal. 25, No. 1, 68–97 (2008; Zbl 1148.94005)]. We also discuss extensions in higher dimensions and links with distance matrices.

MSC:

47G10 Integral operators
47A75 Eigenvalue problems for linear operators
45P05 Integral operators
65J10 Numerical solutions to equations with linear operators
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations

Citations:

Zbl 1148.94005

Software:

DLMF

References:

[1] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions, National Bureau of Standards. Handbook of Mathematical Functions, National Bureau of Standards, Appl. Math. Ser., vol. 55 (1964), U.S. Government Printing Office: U.S. Government Printing Office Washington, DC) (1972), Dover Publications, Inc., republished by · Zbl 0543.33001
[2] Abramovich, Y. A.; Aliprantis, C. D., An Invitation to Operator Theory, Grad. Stud. Math., vol. 50 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1022.47001
[3] Abramovich, Y. A.; Aliprantis, C. D., Problems in Operator Theory, Grad. Stud. Math., vol. 51 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1022.47002
[4] Ayoub, R., Euler and the zeta function, Amer. Math. Monthly, 81, 1067-1086 (1974) · Zbl 0293.10001
[5] Bapat, R.; Kirkland, S. J.; Neumann, M., On distance matrices and Laplacians, Linear Algebra Appl., 401, 193-209 (2005) · Zbl 1064.05097
[6] Bavaud, F., On the Schoenberg transformations in data analysis, J. Classification, 28, 297-314 (2011) · Zbl 1360.62313
[7] Bekers, D. J.; Van Eijndhoven, S. J.L., Spectral analysis of integro-differential operators applied in linear antenna modelling, Proc. Edinb. Math. Soc. (2), 55, 333-354 (2012) · Zbl 1243.78034
[8] Bogomolny, E.; Bohigas, O.; Schmit, C., Spectral properties of distance matrices, J. Phys. A: Math. Gen., 36, 3595-3616 (2003) · Zbl 1057.15027
[9] Bogomolny, E.; Bohigas, O.; Schmit, C., Distance matrices and isometric embeddings, Zh. Mat. Fiz. Anal. Geom., 4, 7-23 (2008) · Zbl 1151.82016
[10] Bojdecki, T., Analytic approach to semiclassical logarithmic potential theory, Studia Math., 35, 181-197 (1970) · Zbl 0242.31001
[11] Carlitz, L., Recurrences for the Rayleigh functions, Duke Math. J., 34, 581-590 (1967) · Zbl 0166.07501
[12] Choquard, Ph.; Stubbe, J., The one-dimensional Schrödinger-Newton equations, Lett. Math. Phys., 81, 177-184 (2007) · Zbl 1161.35499
[13] Diaconis, P.; Goel, S.; Holmes, S., Horseshoes in multidimensional scaling and local kernel methods, Ann. Appl. Stat., 2, 777-807 (2008) · Zbl 1149.62316
[14] Dunham, W., Euler: The Master of Us All, Dolciani Math. Exp., vol. 22 (1999), Math. Assoc. Amer.: Math. Assoc. Amer. Washington, DC · Zbl 0951.01012
[15] Dutka, J., On the early history of Bessel functions, Arch. Hist. Exact Sci., 49, 105-134 (1995) · Zbl 0829.01007
[16] El Karoui, N. E., The spectrum of kernel random matrices, Ann. Statist., 38, 1-50 (2010) · Zbl 1181.62078
[17] Euler, L., De summis serierum reciprocarum, Commun. Acad. Sci. Petrop., 7, 123-134 (1740), presented at the St. Petersburg Academy in 1734
[18] Euler, L., De oscillationibus minimis funis libere suspens, Acta Acad. Sci. Imp. Petrop. V, pars 1, 157-177 (1781, 1784), presented in the St. Petersburg Academy in 1774
[19] Gantmacher, F. R., The Theory of Matrices, vols. I & II (1959), Chelsea Publishing Co. · Zbl 0085.01001
[20] Garoufalidis, S.; Popescu, I., Analyticity of the planar limit of a matrix model, Ann. Henri Poincaré, 14, 499-565 (2013) · Zbl 1271.81168
[21] Goodwin, B. E., On the realization of the eigenvalues of integral equations whose kernels are entire or meromorphic in the eigenvalue parameter, SIAM J. Appl. Math., 14, 65-85 (1966) · Zbl 0142.09203
[22] Grieser, D., Über Eigenwerte, Integrale und \(\frac{\pi^2}{6} \): Die Idee der Spurformel, Math. Semesterber., 54, 199-217 (2007) · Zbl 1154.15303
[23] Gupta, D. P.; Muldoon, M. E., Riccati equations and convolution formulae for functions of Rayleigh type, J. Phys. A: Math. Gen., 33, 1363-1368 (2000) · Zbl 0953.33003
[24] Ismail, M. E.H.; Muldoon, M. E., Bounds for the small real and purely imaginary zeros of Bessel and related functions, Methods Appl. Anal., 2, 1-21 (1995) · Zbl 0845.33003
[25] Jiang, T., Distributions of eigenvalues of large Euclidean matrices generated from \(\ell_p\) balls and spheres, Linear Algebra Appl., 73, 14-36 (2013)
[26] Kac, M., Distribution of eigenvalues of certain integral operators, Michigan Math. J., 3, 141-148 (1955) · Zbl 0074.31601
[27] Kac, M., A class of limit theorems, Trans. Amer. Math. Soc., 84, 459-471 (1957) · Zbl 0078.31503
[28] Kac, M., On some probabilistic aspects of classical analysis, Amer. Math. Monthly, 77, 586-597 (1970) · Zbl 0208.13704
[29] Kerimov, M. K., Overview of some new results concerning the theory and applications of the Rayleigh special function, Comput. Math. Math. Phys., 48, 1454-1507 (2008) · Zbl 07818334
[30] Kishore, N., The Rayleigh function, Proc. Amer. Math. Soc., 14, 527-533 (1963) · Zbl 0117.29904
[31] Kishore, N., The Rayleigh polynomial, Proc. Amer. Math. Soc., 15, 911-917 (1964) · Zbl 0126.28503
[32] Kishore, N., A structure of the Rayleigh polynomial, Duke Math. J., 31, 513-518 (1964) · Zbl 0132.29904
[33] Knopp, K., Theory of Functions: Part II (1947), Dover Publications, Inc.: Dover Publications, Inc. Mineola, NY, translated by Frederick Bagemihl from the fourth German edition
[34] Ledoux, M.; Popescu, I., Mass transportation proofs of free functional inequalities, and free Poincaré inequalities, J. Funct. Anal., 257, 1175-1221 (2009) · Zbl 1168.60009
[35] Ledoux, M.; Popescu, I., The one dimensional free Poincaré inequality, Trans. Amer. Math. Soc., 365, 4811-4849 (2013) · Zbl 1281.46056
[36] Liron, N., Some infinite sums, SIAM J. Math. Anal., 2, 105-112 (1971) · Zbl 0208.32903
[37] Liron, N., A recurrence concerning Rayleigh functions, SIAM J. Math. Anal., 2, 496-499 (1971) · Zbl 0224.33024
[38] Liron, N., Infinite sums of roots for a class of transcendental equations and Bessel functions of order one-half, Math. Comp., 25, 769-781 (1971) · Zbl 0227.65033
[39] Mikhlin, S. G., Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology (1964), Pergamon Press: Pergamon Press New York, translated from the Russian by A.H. Armstrong · Zbl 0117.31902
[40] (Olver, F. W.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge Univ. Press) · Zbl 1198.00002
[41] Oseledets, I., The integral operator with logarithmic kernel has only one positive eigenvalue, Linear Algebra Appl., 428, 1560-1564 (2008) · Zbl 1131.47046
[42] Pólya, G.; Szegő, G., Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew. Math., 165, 4-49 (1931) · JFM 57.0094.03
[43] Radoux, C., Series liées aux racines de l’equation \(tg x = x\), Bull. Soc. Math. Belg., Sér. B, 40, 199-205 (1988) · Zbl 0653.33008
[44] Rayleigh, J. W.S., Note on the numerical calculation of the roots of fluctuating functions, Proc. Lond. Math. Soc., 5, 119-124 (1874) · JFM 06.0295.01
[45] Rayleigh, J. W.S., The Theory of Sound, vols. I & II (1945), Macmillan: Macmillan London, UK: Dover Publications, Inc., with a historical introduction by R.B. Lindsay, republished by
[46] Reade, J. B., Asymptotic behaviour of eigen-values of certain integral equations, Proc. Edinb. Math. Soc. (2), 22, 137-144 (1979) · Zbl 0414.45003
[47] Rosasco, L.; Belkin, M.; De Vito, E., On learning with integral operators, J. Mach. Learn. Res., 11, 905-934 (2010) · Zbl 1242.62059
[48] Saito, N., Data analysis and representation on a general domain via eigenfunctions of Laplacian, Appl. Comput. Harmon. Anal., 25, 68-97 (2008) · Zbl 1148.94005
[49] Schoenberg, I. J., On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math., 38, 787-793 (1937) · JFM 63.0363.03
[50] Schoenberg, I. J., Metric spaces and completely monotone functions, Ann. of Math., 39, 811-841 (1938) · JFM 64.0617.03
[51] Schoenberg, I. J., Metric spaces and positive definite functions, Trans. Amer. Math. Soc., 44, 522-536 (1938) · JFM 64.0617.02
[52] Speigel, M. R., The summation of series involving roots of transcendental equations and related applications, J. Appl. Phys., 24, 1103-1106 (1953) · Zbl 0051.04702
[53] Spitzer, F., Recurrent random walk and logarithmic potential, (Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., vol. 2 (1961), University of California Press), 515-534 · Zbl 0107.35505
[54] Spitzer, F., Some properties of recurrent random walk, Illinois J. Math., 5, 234-245 (1961) · Zbl 0109.36201
[55] Strauss, W. A., Partial Differential Equations: An Introduction (2008), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester · Zbl 1160.35002
[56] Szegő, G., Solutions to problem 3705 (proposed by Raphael Robinson), Amer. Math. Monthly, 43, 246-259 (1936)
[57] Takasu, K., On the eigenvalues of recurrent potential kernels, Hiroshima Math. J., 2, 19-31 (1972) · Zbl 0268.60070
[58] Troutman, J. L., The logarithmic potential operator, Illinois J. Math., 11, 365-374 (1967) · Zbl 0153.15201
[59] Varadarajan, V. S., Euler and his work on infinite series, Bull. Amer. Math. Soc., 44, 515-539 (2007) · Zbl 1135.01010
[60] Watson, G. N., A Treatise on the Theory of Bessel Functions (1944), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.