×

Convergence and lattice properties of a class of martingale-like sequences. (English) Zbl 0802.46044

Let \((\Omega, {\mathcal A}, P)\) be a complete probability space and let \(({\mathcal A}_ n)\) be an increasing sequence of \(sub-\sigma\)-algebras of the \(\sigma\)-algebra \({\mathcal A}\). A sequence \((X_ n)\) is called an \(s\)- game if for each \(\varepsilon>0\) \(\exists p\) such that \(\forall q\in\mathbb{N}\), \(s\in S\) with \(s\geq q\geq p\), \(P(\| X_ q(s)- X_ q\| >\varepsilon) <\varepsilon\) holds. A sequence \((X_ n)\) is called an \(L^ 1\) \(s\)-game if it is an \(S\)-game and the subsequence \((X_ s)\) is an \(L^ 1\)-amart. Here, \((X_ n)\) is a sequence of \(E\)-valued Bochner integrable random variables for a fixed Banach space \(E\).
The following results are proved:
(i) A sequence \((X_ n)\) is an \(L^ 1\) \(s\text{-game} \Leftrightarrow (X_ n)\) has a Riesz decomposition \(X_ n= M_ n+ P_ n\), where \((M_ n)\) is a martingale, \((P_ n)\) converges to zero in probability and the subsequence \((P_ s)\) is an \(L^ 1\)-potential.
(ii) The class of \(L^ 1\)-bounded \(L^ 1\) \(s\)-games in \(\ell^ 1\) is a Banach lattice with the norm \(\|(X)\|_ \mathbb{N} =\sup_{(\mathbb{N})} E(\| X_ n \|)\), where \(\mathbb{N}\) is the set of all positive integers.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E40 Spaces of vector- and operator-valued functions
60G46 Martingales and classical analysis
46A45 Sequence spaces (including Köthe sequence spaces)
Full Text: DOI

References:

[1] D. G. Austin, G. A. Edgar and A. Ionescu Tulcea, Pointwise convergence in terms of expectations, Z. Wahrsch. verw. Gebiete, 30 (1974), 17-26. · Zbl 0276.60034 · doi:10.1007/BF00532860
[2] A. Bellow, Uniform amarts: A class of asymptotic martingales for which strong almost sure convergence obtains, Z. Wahrsch. verw. Gebiete, 41 (1977), 177-191. · Zbl 0391.60005 · doi:10.1007/BF00534238
[3] L. H. Blake, A generalization of martingales and two consequent convergence theorems, Pacific J. Math., 35 (1970), 279-283. · Zbl 0218.60050
[4] S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Mat. Scand., 22 (1968), 21-41. · Zbl 0175.14503
[5] G. A. Edgar and L. Sucheston, Amarts: A class of asymptotic martingales. A. Discrete parameter, J. Multiv. Anal., 6 (1976), 193-221. · Zbl 0336.60033 · doi:10.1016/0047-259X(76)90031-2
[6] N. Ghoussoub, Orderamarts: A class of asymptotic martingales, J. Multiv. Anal., 9 (1979), 165-172. · Zbl 0407.60042 · doi:10.1016/0047-259X(79)90075-7
[7] A. Gut and K. D. Schmidt, Amarts and Set Function Processes, Lecture Notes in Math. 1042 (1983). · Zbl 0525.60055
[8] Dinh Quang Luu, Applications of set-valued Radon-Nikodym theorem to convergence of multivalued L 1 amarts, Math. Scand., 54 (1984), 101-113. · Zbl 0562.60057
[9] Dinh Quang Luu, Stability and convergence of amarts in Frechet spaces, Acta Math. Hung., 45 (1985), 99-106. · Zbl 0571.60063 · doi:10.1007/BF01955027
[10] Dinh Quang Luu, Representation theorems for multivalued (regular) L 1-amarts, Math. Scand., 58 (1986), 5-22. · Zbl 0626.60042
[11] A. Millet and L. Sucheston, Convergence of classes of amarts indexed by directed sets, Canadian J. Math., 32 (1980), 86-125. · Zbl 0448.60036 · doi:10.4153/CJM-1980-009-1
[12] A. G. Mucci, Limits for martingale-like sequences, Pacific J Math., 48 (1973), 197-202. · Zbl 0294.60038
[13] J. Neveu, Martingales a Temps Discret, Masson (Paris, 1972). · Zbl 0235.60010
[14] K. D. Schmidt, The lattice property of uniform amarts, Ann. Probability, 17 (1989), 372-378. · Zbl 0684.60033 · doi:10.1214/aop/1176991516
[15] R. Subramanian, On a generalization of martingales due to Blake, Pacific J. Mat., 48 (1973), 275-278. · Zbl 0292.60074
[16] J. Szulga, On the submartingale characterization of Banach lattice isomorphic to 281-1, Bull. Acad. Polon. Sci. Serie Sci. Math. Astronom. Phys., 26 (1978), 65-68. · Zbl 0377.60051
[17] M. Talagrand, Some structure results for martingales in the limit and pramarts, Ann. Probability, 13 (1985), 1192-1203. · Zbl 0582.60055 · doi:10.1214/aop/1176992804
[18] J. J. Uhl Jr., Applications of Radon-Nikodym theorems to martingale convergence, T. A. A. M. S., 145 (1969), 271-285. · Zbl 0211.21903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.