×

Some multivariate imprecise shock model copulas. (English) Zbl 1522.62029

Summary: Although bivariate imprecise copulas have recently attracted substantial attention, the multivariate case seems still to be open. So, it is natural to test it first on shock model induced copulas, a family which might be the most useful in various applications. We investigate a model in which some of the shocks are assumed imprecise and develop the corresponding set of copulas. In the Marshall’s case we get a coherent set of distributions and a coherent set of copulas, where the bounds are naturally corresponding to each other. The situation in the other two groups of multivariate imprecise shock model induced copulas, i.e., the maxmin and the reflected maxmin (RMM) copulas, is substantially more involved, but we are still able to exhibit their properties. These are the main results of the paper that serves as the first step into a theory that should develop in this direction. Also, the theory of imprecise RMM copulas seems to be new even in the bivariate case. It turns out that all imprecise copulas under consideration are coherent.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas

Software:

CopulaModel

References:

[1] (Augustin, T.; Coolen, F. P.A.; de Cooman, G.; Troffaes, M. C.M., Introduction to Imprecise Probabilities (2014), John Wiley & Sons: John Wiley & Sons Chichester) · Zbl 1290.62003
[2] Coolen, F. P.A., On the use of imprecise probabilities in reliability, Qual. Reliab. Eng. Int., 20, 193-202 (2004)
[3] de Cooman, G.; Hermans, F.; Quaeghebeur, E., Imprecise Markov chains and their limit behavior, Probab. Eng. Inf. Sci., 23, 4, 597-635 (2009) · Zbl 1183.60026
[4] Couso, I.; Moral, S.; Walley, P., A survey of concepts of independence for imprecise probabilities, Risk Decis. Policy, 5, 165-181 (2000)
[5] Couso, I.; Moral, S., Independence concepts in evidence theory, Int. J. Approx. Reason., 51, 748-758 (2010) · Zbl 1205.68421
[6] Cuadras, C. M.; Augè, J., A continuous general multivariate distribution and its properties, Commun. Stat., Theory Methods, 10, 339-353 (1981) · Zbl 0456.62013
[7] Durante, F.; Sempi, C., Principles of Copula Theory (2015), CRC/Chapman & Hall: CRC/Chapman & Hall Boca Raton
[8] Durante, F.; Girard, S.; Mazo, G., Marshall-Olkin type copulas generated by a global shock, Am. J. Comput. Appl. Math., 296, 638-648 (2016) · Zbl 1328.62305
[9] Durante, F.; Omladič, M.; Oražem, L.; Ružić, N., Shock models with dependence and asymmetric linkages, Fuzzy Sets Syst., 323, 152-168 (2017) · Zbl 1368.62127
[10] Ferson, S.; Kreinovich, V.; Ginzburg, L.; Myers, D. S.; Sentz, K., Constructing probability boxes and Dempster-Shafer structures (2003), Technical report SAND2002-4015
[11] Jansen, C.; Schollmeyer, G.; Augustin, T., Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences, Int. J. Approx. Reason., 98, 112-131 (2018) · Zbl 1451.91040
[12] Joe, H., Dependence Modeling with Copulas (2014), Chapman & Hall/CRC: Chapman & Hall/CRC London · Zbl 1346.62001
[13] Košir, T.; Omladič, M., Reflected maxmin copulas and modeling quadrant subindependence, Fuzzy Sets Syst., 378, 125-143 (2020) · Zbl 1464.62284
[14] Kokol Bukovšek, D.; Košir, T.; Mojškerc, B.; Omladič, M., Asymmetric linkages: maxmin vs. reflected maxmin copulas, Fuzzy Sets Syst., 393, 75-95 (2020) · Zbl 1452.60014
[15] Marshall, A. W.; Olkin, I., A multivariate exponential distributions, J. Am. Stat. Assoc., 62, 30-44 (1967) · Zbl 0147.38106
[16] Marshall, A. W.; Olkin, I., A generalized bivariate exponential distribution, J. Appl. Probab., 4, 291-302 (1967) · Zbl 0155.24001
[17] Marshall, A. W., Copulas, marginals, and joint distributions, (Rüschendorf, L.; Schweitzer, B.; Taylor, M. D., Distributions with Fixed Marginals and Related Topics in LMS. Distributions with Fixed Marginals and Related Topics in LMS, Lecture Notes - Monograph Series, vol. 28 (1996)), 213-222
[18] Miranda, E.; Montes, I., Shapley and Banzhaf values as probability transformations, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 26, 917-947 (2018) · Zbl 1470.91024
[19] Montes, I.; Miranda, E.; Montes, S., Decision making with imprecise probabilities and utilities by means of statistical preference and stochastic dominance, Eur. J. Oper. Res., 234, 209-220 (2014) · Zbl 1305.91106
[20] Montes, I.; Miranda, E.; Pelessoni, R.; Vicig, P., Sklar’s theorem in an imprecise setting, Fuzzy Sets Syst., 278, 48-66 (2015) · Zbl 1377.60033
[21] Nau, R., Imprecise probabilities in non-cooperative games, (Proceedings of ISIPTA (2011)), 297-306
[22] Nelsen, R. B., An Introduction to Copulas (2006), Springer-Verlag: Springer-Verlag New York · Zbl 1152.62030
[23] Oberguggenberger, M.; King, J.; Schmelzer, B., Classical and imprecise probability methods for sensitivity analysis in engineering: a case study, Int. J. Approx. Reason., 50, 680-693 (2009)
[24] Omladič, M.; Ružić, N., Shock models with recovery option via the maxmin copulas, Fuzzy Sets Syst., 284, 113-128 (2016) · Zbl 1383.62163
[25] Omladič, M.; Stopar, N., Final solution to the problem of relating a true copula to an imprecise copula, Fuzzy Sets Syst., 393, 96-112 (2020) · Zbl 1452.62353
[26] Omladič, M.; Stopar, N., A full scale Sklar’s theorem in the imprecise setting, Fuzzy Sets Syst., 393, 113-125 (2020) · Zbl 1452.62354
[27] Omladič, M.; Stopar, N., On a new partial order on bivariate distributions and on constrained bounds of their copulas, Fuzzy Sets Syst., 415, 118-135 (2021) · Zbl 1467.62076
[28] Omladič, M.; Stopar, N., Multivariate imprecise Sklar type theorems, Fuzzy Sets Syst. · Zbl 1522.62036
[29] Omladič, M.; Škulj, D., Constructing copulas from shock models with imprecise distributions, Int. J. Approx. Reason., 118, 27-46 (2020) · Zbl 1471.62360
[30] Pelessoni, R.; Vicig, P., Convex imprecise previsions, Reliab. Comput., 9, 465-485 (2003) · Zbl 1037.60003
[31] Pelessoni, R.; Vicig, P.; Montes, I.; Miranda, E., Imprecise copulas and bivariate stochastic orders, (Proc. EUROFUSE 2013. Proc. EUROFUSE 2013, Oviedo (2013)), 217-224
[32] Pelessoni, R.; Vicig, P.; Montes, I.; Miranda, E., Bivariate p-boxes, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 24, 02, 229-263 (2016) · Zbl 1384.60015
[33] Schmelzer, B., Joint distributions of random sets and their relation to copulas, Int. J. Approx. Reason., 65, 59-69 (2015) · Zbl 1335.60012
[34] Schmelzer, B., Sklar’s theorem for minitive belief functions, Int. J. Approx. Reason., 63, 48-61 (2015) · Zbl 1346.68208
[35] Schmelzer, B., Multivariate capacity functional vs. capacity functionals on product spaces, Fuzzy Sets Syst., 364, 1-35 (2019) · Zbl 1423.60031
[36] Sklar, A., Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Stat. Univ. Paris, 8, 229-231 (1959) · Zbl 0100.14202
[37] Škulj, D., Discrete time Markov chains with interval probabilities, Int. J. Approx. Reason., 50, 9, 1314-1329 (2009) · Zbl 1195.60100
[38] Troffaes, M. C.M., Decision making under uncertainty using imprecise probabilities, Int. J. Approx. Reason., 45, 17-29 (2007) · Zbl 1119.91028
[39] Troffaes, M. C.M.; Destercke, S., Probability boxes on totally preordered spaces for multivariate modelling, Int. J. Approx. Reason., 52, 767-791 (2011) · Zbl 1235.60006
[40] Utkin, L. V.; Coolen, F. P.A., Imprecise reliability: an introductory overview, (Levitin, G., Computational Intelligence in Reliability Engineering. Computational Intelligence in Reliability Engineering, Studies in Computational Intelligence, vol. 40 (2007), Springer: Springer Berlin, Heidelberg) · Zbl 1158.62069
[41] Vicig, P., Financial risk measurement with imprecise probabilities, Int. J. Approx. Reason., 49, 159-174 (2008) · Zbl 1185.91201
[42] Walley, P., Statistical Reasoning with Imprecise Probabilities (1991), Chapman and Hall: Chapman and Hall London · Zbl 0732.62004
[43] Yu, L.; Destercke, S.; Sallak, M.; Schon, W., Comparing system reliability with ill-known probabilities, (Proceedings of IPMU 2016 (2016)), 619-629 · Zbl 1458.93074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.