×

On the exceptionality of rational APN functions. (English) Zbl 1530.11097

A function \(f\) on the finite field \(\mathbb{F}_q\), \(q=2^n\), is called an APN function (almost perfect nonlinear) if for all nonzero \(a\in\mathbb{F}_q\), the derivative \(D_af(x) = f(x+a)+f(x)\) is \(2\)-to-\(1\). An APN function \(f\) (not necessarily represented as a polynomial) is called exceptional, if \(f\) is APN over infinitely many extensions \(\mathbb{F}_{q^m}\) of \(\mathbb{F}_q\). The authors consider functions, which can be represented by rational maps. As main result, they present non-existence results for exceptional APN functions given as \(\varphi = \frac{f}{g}\), \(f,g\in\mathbb{F}_q[x]\), \(\gcd(f,g) = 1\), \(g(x)\ne 0\) for all \(x\in\mathbb{F}_q\).

MSC:

11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
94D10 Boolean functions

References:

[1] Aubry, Y.; McGuire, G.; Rodier, F., A few more functions that are not APN infinitely often, finite fields theory and applications, Contemp. Math., 518, 23-31 (2010) · Zbl 1206.94025 · doi:10.1090/conm/518/10193
[2] Bartoli, D.; Zhou, Y., Exceptional scattered polynomials, J. Algebra, 509, 507-534 (2018) · Zbl 1393.51002 · doi:10.1016/j.jalgebra.2018.03.010
[3] Biham, E.; Shamir, A., Differential cryptanalysis of DES-like cryptosystems, finite fields: theory and applications, Contemp. Math., 4, 3-72 (1991) · Zbl 0729.68017
[4] Browning, KA; Dillon, J.; Kibler, R.; McQuistan, MT, APN polynomials and related codes, J. Combin. Inf. Syst. Sci., 34, 1-4, 135-159 (2009) · Zbl 1269.94035
[5] Budaghyan, L.; Carlet, C.; Pott, A., New classes of almost bent and almost perfect nonlinear polynomials, IEEE Tran. Inf. Theory, 52, 1141-1152 (2006) · Zbl 1177.94136 · doi:10.1109/TIT.2005.864481
[6] Budaghyan, L.; Carlet, C., Classes of quadratic APN trinomials and hexanomials and related structures, IEEE Tran. Inf. Theory, 54, 5, 2354-2357 (2008) · Zbl 1177.94134 · doi:10.1109/TIT.2008.920246
[7] Budaghyan, L.; Calderini, M.; Carlet, C.; Coulter, RS; Villa, I., Constructing APN functions through isotopic shifts, IEEE Tran. Inf. Theory, 66, 8, 5299-5309 (2020) · Zbl 1446.94085 · doi:10.1109/TIT.2020.2974471
[8] Budaghyan, L.; Calderini, M.; Villa, I., On equivalence between known families of quadratic APN functions, Finite Fields Appl., 66 (2020) · Zbl 1458.94217 · doi:10.1016/j.ffa.2020.101704
[9] Budaghyan, L.; Calderini, M.; Carlet, C.; Coulter, R.; Villa, I., Generalized isotopic shift construction for APN functions, Des. Codes Cryptogr., 89, 1, 19-32 (2021) · Zbl 1458.94201 · doi:10.1007/s10623-020-00803-1
[10] Cafure, A.; Matera, G., Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields Appl., 12, 2, 155-185 (2006) · Zbl 1163.11329 · doi:10.1016/j.ffa.2005.03.003
[11] Carlet, C., Boolean Functions for Cryptography and Coding Theory (2021), Cambridge: Cambridge University Press, Cambridge · Zbl 1512.94001
[12] Carlet, C.; Charpin, P.; Zinoviev, V., Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15, 125-156 (1998) · Zbl 0938.94011 · doi:10.1023/A:1008344232130
[13] Coulter, RS; Henderson, M., A class of functions and their application in constructing semi-biplanes and association schemes, Discret. Math., 202, 1-3, 21-31 (1999) · Zbl 0938.51011 · doi:10.1016/S0012-365X(98)00345-8
[14] Delgado, M., The state of the art on the conjecture of exceptional APN functions, Note Mat., 37, 1, 41-51 (2017) · Zbl 1407.11141
[15] Dembowski, P.; Ostrom, TG, Planes of order \(n\) with collineation groups of order \(n^2\), Math. Z., 103, 3, 239-258 (1968) · Zbl 0163.42402 · doi:10.1007/BF01111042
[16] Dempwolff, U.; Edel, Y., Dimensional dual hyperovals and APN functions with translation groups, J. Algebraic Combin., 39, 2, 457-496 (2014) · Zbl 1292.05068 · doi:10.1007/s10801-013-0454-9
[17] Fine, NJ, Binomial coefficients modulo a prime, Am. Math. Mon., 54, 589-592 (1947) · Zbl 0030.11102 · doi:10.2307/2304500
[18] Fulton W.: Algebraic Curves. Advanced Book Classics. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989). · Zbl 0681.14011
[19] Ghorpade, S.; Lachaud, G., Etale cohomology, Lefschetz theorem and number of points of singular varieties over finite fields, Mosc. Math. J., 2, 589-631 (2002) · Zbl 1101.14017 · doi:10.17323/1609-4514-2002-2-3-589-631
[20] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York. (1977) · Zbl 0367.14001
[21] Hernando, F.; McGuire, G., Proof of a conjecture on the sequence of exceptional numbers classifying cyclic codes and APN functions, J. Algebra, 343, 78-92 (2011) · Zbl 1244.94046 · doi:10.1016/j.jalgebra.2011.06.019
[22] Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008) · Zbl 1200.11042
[23] Janwa, H.; McGuire, G.; Wilson, R., Double-error correcting cyclic codes and absolutely irreducible polynomials over \(GF(2)\), J. Algebra, 178, 665-676 (1995) · Zbl 0853.94021 · doi:10.1006/jabr.1995.1372
[24] Jedlicka, D., APN monomials over \(GF(2^n)\) for infinitely many \(n\), Finite Fields Appl., 13, 1006-1028 (2007) · Zbl 1133.11068 · doi:10.1016/j.ffa.2007.04.004
[25] Lang, S.; Weil, A., Number of points of varieties in finite fields, Am. J. Math., 76, 819-827 (1954) · Zbl 0058.27202 · doi:10.2307/2372655
[26] Mullen, GL; Panario, D., Handbook of Finite Fields (2013), Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 1319.11001 · doi:10.1201/b15006
[27] Nyberg K.: Differentially uniform mappings for cryptography. In: Advances in Cryptography, EUROCRYPT’93. Lecture Notes in Computer Science, vol. 765, pp. 55-64. Springer, New York (1994). · Zbl 0951.94510
[28] Pott, A., Almost perfect and planar functions, Des. Codes Cryptogr., 78, 1, 141-195 (2016) · Zbl 1351.51004 · doi:10.1007/s10623-015-0151-x
[29] Rodier, F., Bornes sur le degré des polynômes presque parfaitement non-linéaires, Contemp. Math., 487, 169-181 (2009) · Zbl 1257.94033 · doi:10.1090/conm/487/09531
[30] Schmidt, K-U; Zhou, Y., Planar functions over fields of characteristic two, J. Algebraic Combin., 40, 503-526 (2014) · Zbl 1319.51008 · doi:10.1007/s10801-013-0496-z
[31] Taniguchi, H., On some quadratic APN functions, Des. Codes Cryptogr., 87, 9, 1973-1983 (2019) · Zbl 1419.11138 · doi:10.1007/s10623-018-00598-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.