×

Experimental and numerical studies on nonlinear vibrations and dynamic snap-through phenomena of bistable asymmetric composite laminated shallow shell under center foundation excitation. (English) Zbl 1494.74032

Summary: This paper experimentally and numerically investigates the nonlinear vibrations and dynamic snap-through behaviors of the bistable asymmetric carbon fiber-reinforced [90n/0n] composite laminated shallow shell. In the experimental research, in order to produce the dynamic snap-through phenomena, the center of a bistable asymmetric composite laminated shallow shell is clamped on an electromechanical shaker. The shaker provides the controlled frequency and amplitude of the foundation excitation. A laser displacement testing system collects the data of the vibration signals for the bistable asymmetric composite laminated shallow shell. A high-speed camera captures the steady-state vibrations of the bistable asymmetric composite laminated shallow shell. The experimental results demonstrate the influence of the structural parameters on the dynamic snap-through phenomena and nonlinear vibrations of the bistable asymmetric composite laminated shallow shell. The amplitude-frequency response curves are obtained by the experimental results. The bifurcation diagrams, phase portraits, time histories, power spectrums, and Poincaré maps are obtained to experimentally and numerically illustrate the single-well periodic, chaotic and double-well chaotic vibrations of the bistable asymmetric composite laminated shallow shell under the center foundation excitation. In numerical research, ABAQUS/CAE is used to simulate the dynamic responses of the bistable asymmetric composite laminated shallow shell. The subspace iteration method is utilized to give the vibration modal analysis. The vibration modes in the experimental research are qualitatively consistent with the results of the ABAQUS numerical simulation. The phenomenon of the energy transfer from the high-order to low-order primary resonance is discovered. The results of the experiment and numerical simulation are well verified with each other.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74K25 Shells
74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids

Software:

ABAQUS
Full Text: DOI

References:

[1] Akira, H.; Hyer, M. W., Non-linear temperature-curvature relationships for unsymmetric graphite-epoxy laminates, Int. J. Solid Struct., 23, p919-935 (1987)
[2] Arrieta, A. F.; Neild, S. A.; Wagg, D. J., Nonlinear dynamic response and modeling of a bistable composite plate for applications to adaptive structures, Nonlinear Dynam., 58, p259-272 (2009) · Zbl 1183.74139
[3] Arrieta, A. F.; Neild, S. A.; Wagg, D. J., On the cross-well dynamics of a bi-stable composite plate, J. Sound Vib., 330, p3424-3441 (2011)
[4] Arrieta, A. F.; Bilgen, O.; Friswell, M. I.; Ermanni, P., Modelling and configuration control of wing-shaped bistable piezoelectric composites under aerodynamic loads, Aero. Sci. Technol., 29, p453-461 (2013)
[5] Betts, D. N.; Salo, A. I.T.; Bowen, C. R.; Kim, H. A., Characterisation and modeling of the cured shapes of arbitrary layup bistable composite laminates, Compos. Struct., 92, p1694-1700 (2010)
[6] Betts, D. N.; Bowen, C. R.; Kim, H. A.; Gathercole, N.; Clarke, C. T.; Inman, D. J., Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application, Eur. Phys. J. Spec. Top., 222, p1553-1562 (2013)
[7] Betts, D. N.; Guyer, R. A.; Bas, P. Y.L.; Bowen, C. R.; Inman, D. J.; Kim, H. A., Modelling the Dynamic Response of Bistable Composite Plates for Piezoelectric Energy Harvesting (2014), Structural Dynamics, & Materials Conference
[8] Borowiec, M.; Rysak, A.; Betts, D. N.; Bowen, C. R.; Kim, H. A.; Litak, G., Complex response of a bistable laminated plate, Multiscale entropy analysis, European Physical Journal Plus, 129, 211 (2014)
[9] Bowen, C.; Kim, H.; Weaver, P.; Weaver, P. M.; Dunn, S., Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci., 7, p25-44 (2013)
[10] Cao, D. X.; Zhang, W.; Yao, M. H., Analytical and experimental studies on nonlinear characteristics of an L-shape beam structure, Acta Mech. Sin., 26, p967-976 (2010) · Zbl 1270.74111
[11] Chen, J. E.; Zhang, W.; Guo, X. Y.; Sun, M., Theoretical and experimental studies on nonlinear oscillations of symmetric cross-ply composite laminated plates, Nonlinear Dynam., 73, p1697-1714 (2013)
[12] Dano, M. L.; Hyer, M. W., Snap-through of unsymmetric fiber-reinforced composite laminates, Int. J. Solid Struct., 39, p175-198 (2002) · Zbl 1090.74555
[13] Diaconu, C. G.; Weaver, P. M.; Arrieta, A. F., Dynamic analysis of bistable composite plates, J. Sound Vib., 322, p987-1004 (2009)
[14] Emam, S. A.; Hobeck, J.; Inman, D. J., Experimental investigation into the nonlinear dynamics of a bistable laminate, Nonlinear Dynam., 95, p3019-3039 (2019)
[15] Firouzian-Nejad, A.; Ziaei-Rad, S.; Moore, M., Vibration analysis of bistable composite cross-ply laminates using refined shape functions, J. Compos. Mater., 51, p1135-1148 (2017)
[16] Gibson, R. F., Damping characteristics of composite materials and structures, J. Mater. Eng. Perform., 1, p11-20 (1992)
[17] Guo, X. Y.; Zhang, W.; Zhao, M. H.; He, Y. C., A new kind of energy transfer from high frequency mode to low frequency mode in a composite laminated plate, Acta Mech., 224, p2937-2953 (2013)
[18] Guo, X. Y.; Zhang, Y.; Zhang, Wei; Sun, L.; Chen, S. P., Nonlinear dynamics of Z-shaped folding wings with 1:1 inner resonance, International Journal of Bifurcation and Chaos, 27, 1750124 (2017) · Zbl 1377.35244
[19] Harne, R. L.; Wang, K. W., A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct., 22, Article 023001 pp. (2013)
[20] Hyer, M. W., Some observations on the cured shapes of thin unsymmetric laminates, J. Compos. Mater., 15, p175-194 (1981)
[21] Jun, W. J.; Hong, C. S., Effect of residual shear strain on the cured shape of unsymmetric cross-ply thin laminates, Compos. Sci. Technol., 38, p55-67 (1990)
[22] Portela, P.; Camanho, P.; Weaver, P.; Bond, I., Analysis of morphing, multi stable structures actuated by piezoelectric patches, Comput. Struct., 86, p347-356 (2008)
[23] Potter, K.; Weaver, P.; Seman, A. A.; Shah, S., Phenomena in the bifurcation of unsymmetric composite plates, Compos. Appl. Sci. Manuf., 38, p100-106 (2007)
[24] Schultz, M. R.; Hyer, M. W.; Williams, R. B.; Wilkie, W. K.; Inman, D. J., Snap-through of unsymmetric laminates using piezocomposite actuators, Compos. Sci. Technol., 66, p2442-2448 (2006)
[25] Shaw, A. D.; Neild, S. A.; Wagg, D. J.; Weaver, P. M.; Carrella, A., A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation, J. Sound Vib., 332, p6265-6275 (2013)
[26] Stewart, H. B.; Thompson, J. M.T.; Ueda, Y.; Lansbury, A. N., Optimal escape from potential wells-patterns of regular and chaotic bifurcations, Physica D, 85, p259-295 (1995) · Zbl 0897.58035
[27] Syta, A.; Bowen, C. R.; Kim, H. A.; Rysak, A.; Litak, G., Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates, Meccanica, 50, p1961-1970 (2015)
[28] Syta, A.; Bowen, C. R.; Kim, H. A.; Rysak, A.; Litak, G., Responses of bistable piezoelectric-composite energy harvester by means of recurrences, Mech. Syst. Signal Process., 76-77, p823-832 (2016)
[29] Taki, M. S.; Tikani, R.; Ziaei-Rad, S.; Firouzian-Nejad, A., Dynamic responses of cross-ply bistable composite laminates with piezoelectric layers, Arch. Appl. Mech., 86, p1003-1018 (2016)
[30] Tawfik, S.; Tan, X.; Ozbay, S.; Armanios, E., Anticlastic stability modeling for cross-ply composites, J. Compos. Mater., 41, p1325-1338 (2006)
[31] Tawfik, S. A.; Dancila, D. S.; Armanios, E., Unsymmetric composite laminates morphing via piezoelectric actuators, Compos. Appl. Sci. Manuf., 42, p748-756 (2011)
[32] Tawfik, S. A.; Dancila, D. S.; Armanios, E., Planform effects upon the bistable response of cross-ply composite shells, Compos. Appl. Sci. Manuf., 42, p825-833 (2011)
[33] Thompson, J. M.T., Chaotic phenomena triggering the escape from a potential well, Proceedings of the Royal Society of London A, Mathematical and Physical Sciences, 421, p195-225 (1989) · Zbl 0674.70035
[34] Udani, J. P.; Arrieta, A. F., Efficient potential well escape for bistable Duffing oscillators, Nonlinear Dynam., 92, p1045-1059 (2018)
[35] Vogl, G. A.; Hyer, M. W., Natural vibration of unsymmetric cross-ply laminates, J. Sound Vib., 330, p4764-4779 (2011)
[36] Zarepoor, M.; Bilgen, O., Constrained-energy cross-well actuation of bistable structures, AIAA J., 54, p2905-2908 (2016)
[37] Zhang, W.; Liu, Y. Z.; Wu, M. Q., Theory and experiment of nonlinear vibrations and dynamic snap-through phenomena for bistable asymmetric laminated composite square panels under foundation excitation, Compos. Struct., 225, 111140 (2019)
[38] Zhang, W.; Ma, W. S.; Zhang, Y. F.; Liu, Y. Z., Double excitation multi-stability and multi-pulse chaotic vibrations of a bistable asymmetric laminated composite square panels under foundation force, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30, Article 083105 pp. (2020) · Zbl 1445.74029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.