×

Analytical solution of the space-time fractional nonlinear Schrödinger equation. (English) Zbl 1378.35318

Summary: The space-time fractional nonlinear Schrödinger equation is solved by mean of on the fractional Riccati expansion method. These solutions include generalized trigonometric and hyperbolic functions which could be useful for further understanding of mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time.

MSC:

35R11 Fractional partial differential equations
35A25 Other special methods applied to PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
35C07 Traveling wave solutions
35C09 Trigonometric solutions to PDEs
Full Text: DOI

References:

[1] Kivshar, Y.; Agrawal, G. P., Optical Solitons: From Fibers to Photonic Crystals (2003), Academic Press
[2] Fedele, R.; Miele, G.; Palumbo, L.; Vaccaro, V. G., Thermal wave model for nonlinear longitudinal dynamics in particle accelerators, Phys. Lett. A, 179, 407 (1993)
[3] Dalfovo, F.; Giorgini, S.; Pitaevskii, L. P.; Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71, 463 (1999)
[4] Belmonte-Beitia, J.; Calvo, G. F., Exact solutions for the quintic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials, Phys. Lett. A, 373, 448 (2009) · Zbl 1227.35235
[5] Xu, T.; Tian, B.; Li, L. L.; Lu, X.; Zhang, C., Dynamics of Alfven solitons in inhomogenous plasmas, Physics Plasmas, 15 (2008), Article ID 102307.
[6] Naber, M., Time fractional Schrödinger equation, J. Math. Phys., 45, 3339 (2004) · Zbl 1071.81035
[7] Wang, S.; Xu, M., Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys., 48 (2007), Article ID043502. · Zbl 1137.81328
[8] Jiang, X. Y., Time-space fractional Schrödinger like equation with a nonlocal term, European Phys. J.: Special Topics, 193, 61 (2011)
[9] Ford, N. J.; Rodrigues, M. M.; Vieira, N., A numerical method for the fractional Schrödinger type equation of spatial dimension two, Fract. Calc. Appl. Anal., 16, 454 (2013) · Zbl 1312.65132
[10] Saxena, R. K.; Kalla, S. L., Computational solution of a fractional generalization of the Schrödinger equation occurring in quantum mechanics, Appl. Math. Comp., 216, 1412 (2010) · Zbl 1190.65157
[11] Wang, J.; Zhou, Y.; Wei, W., Fractional Schrödinger equations with potential and optimal controls, Nonlinear Anal.: Real World Appl., 13, 2755 (2012) · Zbl 1253.35205
[12] Rida, S. Z.; El-Sherbiny, H. M.; Arafa, A. A.M., On solution of nonlinear Schrödinger equation of fractional order, Phys. Lett. A, 372, 553 (2008) · Zbl 1217.81068
[13] Iomin, A., Fractional-time Schrödinger equation: Fractional dynamics on a comb, Chaos, Soliton Fract, 44, 348 (2011) · Zbl 1225.81053
[14] Garrappa, R.; Moret, I.; Popolizio, M., Solving the time-fractional Schrödinger equation by Krylov projection methods, J. Comput. Phys., 293, 115 (2015) · Zbl 1349.65547
[15] Herzallah, M. A.E.; Gepreel, K. A., Approximate solution to the time-space fractional cubic nonlinear Schrödinger equation, Applied Mathematical Modelling, Simulation and Computation for Engineering and Environmental Systems, 36, 5678 (2012) · Zbl 1254.65115
[16] Hemida, K. M.; Gepreel, K. A.; Mohamed, M. S., Analytical approximate solution to the time-space nonlinear partial fractional differential equations, IJPAM, 78, 233 (2012) · Zbl 1247.65110
[17] Hamed, S. H.M.; Yousif, E. A.; Arbab, A. I., Analytic and approximate solutions of the space-time fractional Schrödinger equations by homotopy perturbation Sumudu transform method, Abstr. Appl. Anal., 2014 (2014), Article ID 863015. · Zbl 1474.35650
[18] Atanackovic, T. M.; Pilipovic, S.; Stankovic, B.; Zorica, D., Fractional Calculus with Application in Mechanics: Vibrations and Diffusion Processes (2014), Wiley-TSTE.: Wiley-TSTE. London · Zbl 1291.74001
[19] Herrmann, R., Fractional Calculus: An Introduction for Physicsts (2014), World Scientific: World Scientific Singapore · Zbl 1293.26001
[20] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2010), Imperial College Press: Imperial College Press London · Zbl 1210.26004
[21] Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications (1999), Academic Press: Academic Press San Diego-New York-London · Zbl 0924.34008
[22] Jumarie, G., On the fractional solution of the equation \(f(x + y) = f(x)f(y)\) and its application to fractional Laplace’s transform, Appl. Math. Comput., 219, 1625 (2012) · Zbl 1291.26003
[23] Jumarie, G., An approach to differential geometry of fractional order via modified Riemann-Liouville derivative, Acta Math. Sinica, English Series, 28, 1741 (2012) · Zbl 1266.26013
[24] Jumarie, G., An approach via fractional analysis to non-linearity induced by coarse-graining in space, Nonlinear Anal.: Real World Appl., 11, 535 (2010) · Zbl 1195.37054
[25] Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22, 378 (2009) · Zbl 1171.26305
[26] Jumarie, G., Fractional Differential Calculus for non-differentiable Functions. Mechanics, Geometry, Stochastics, Information Theory (2013), Lambert Academic Publishing: Lambert Academic Publishing Saarbrücken
[27] El-Wakil, S. A.; Abulwafa, E. M.; Zahran, M. A.; Mahmoud, A. A., Formulation of some fractional evolution equations used in mathematical physics, Nonlinear Sci. Lett. A, 2, 37 (2011) · Zbl 1234.35219
[28] El-Wakil, S. A.; Abulwafa, E. M.; El-Shewy, E. K.; Mahmoud, A. A., Time-fractional study of electron acoustic solitary waves in plasma of cold electron and two isothermal ions, J. Plasma Phys., 78, 641 (2012)
[29] Abdel-Salam, E. A-B.; Yousif, E. A., Solution of nonlinear space-time fractional differential equations using the fractional Riccati expansion method, Math. Probl. Eng., 2013 (2013), article ID 846283. · Zbl 1299.35057
[30] Abdel-Salam, E. A-B.; Yousif, E. A.; Arko, Y. A.S.; Gumma, E. A.E., Solution of moving boundary space-time fractional Burger’s equation, J. Appl. Math., 2014 (2014), Article ID 218092 · Zbl 1437.35604
[31] Abdel-Salam, E. A-B.; Gumma, E. A.E., Analytical solution of nonlinear space-time fractional differential equations using the improved fractional Riccati expansion method, Ain Shams Engineering Journal, 6, 613 (2015)
[32] El-Sayed, A. M.A.; Gaber, M., The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett. A, 359, 175 (2006) · Zbl 1236.35003
[33] El-Sayed, A. M.A.; Behiry, S. H.; Raslan, W. E., Adomian’s decomposition method for solving an intermediate fractional advection-dispersion equation, Comp. Math. Appl., 59, 1759 (2010) · Zbl 1189.35358
[34] Wu, G.-C., A fractional variational iteration method for solving fractional nonlinear differential equations, Comp. Math. Appl., 61, 2186 (2011) · Zbl 1219.65085
[35] Zhang, S.; Zong, Q. A.; Liu, D.; Gao, Q., A generalized exp-function method for fractional Riccati differential equations, Commun. Frac. Calc., 1, 48 (2010)
[36] Zheng, B., Exp-function method for solving fractional partial differential equations, Scientific World Journal, 2013 (2013), Article ID 465723.
[37] Zhang, S.; Zhang, H., Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375, 1069 (2011) · Zbl 1242.35217
[38] Guo, S.; Mei, L.; Li, Y.; Sun, Y., The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A, 376, 407 (2012) · Zbl 1255.37022
[39] Lu, B., Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys. Lett. A, 376, 2045 (2012) · Zbl 1266.35139
[40] Tang, B.; He, Y.; Wei, L.; Zhang, X., A generalized fractional sub-equation method for fractional differential equations with variable coefficients, Phys. Lett. A, 376, 2588 (2012) · Zbl 1266.34014
[41] Zheng, B., \((G\)′/\(G)\)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys., 58, 623 (2012) · Zbl 1264.35273
[42] Akgül, A.; Kýlýcman, A.; Inc, M., Improved-expansion method for the space and time fractional foam drainage and KdV equations, Abstr. Appl. Anal., 2013 (2013), Article ID 414353. · Zbl 1293.35007
[43] Lu, B., The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395, 684 (2012) · Zbl 1246.35202
[44] Li, W.; Yang, H.; He, B., Exact solutions of fractional Burgers and Cahn-Hilliard equations using extended fractional Riccati expansion method, Mathematical Problems in Engineering, 2014 (2014), Article ID 104069. · Zbl 1407.35214
[45] Abdel-Salam, E. A-B.; Al-Muhiameed, Z. I.A., Analytic solutions of the space-time fractional combined KdV-mKdV equation, Math. Probl. Eng., 2015 (2015), Article ID 871635. · Zbl 1394.35539
[46] Kolwankar, K. M.; Gangal, A. D., Local fractional Fokker-Planck equation, Phys. Rev. Lett., 80, 214 (1998) · Zbl 0945.82005
[47] Chen, Y.; Yan, Y.; Zhang, K., On the local fractional derivative, J. Math. Anal. Appl., 362, 17 (2010) · Zbl 1196.26011
[48] Chen, W.; Sun, H. G., Multiscale statistical model of fully-developed turbulence particle accelerations, Mod. Phys. Lett. B, 23, 449 (2009) · Zbl 1386.76089
[49] Butzer, P. L.; Westphal, U., An introduction to fractional calculus., (Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Sci.: World Sci. Singapore) · Zbl 0987.26005
[50] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51, 1367 (2006) · Zbl 1137.65001
[51] He, J. H.; Elagan, S. K.; Li, Z. B., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376, 257 (2012) · Zbl 1255.26002
[52] Ibrahim, R. W., Fractional complex transforms for fractional differential equations, Adv. Difference Equ., 2012, 192 (2012) · Zbl 1377.35266
[54] Wadati, M., Introduction to solitons, Paramana J. Phys., 57, 841 (2001)
[55] Helal, M. A., Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Soliton Fractals, 13, 1917 (2002) · Zbl 0997.35063
[56] Yang, Q.; Dai, C. Q.; Wang, Y. Y.; Zhang, J. F., Quantum soliton solutions of quantum Zakharov equations for plasmas, J. Phys. Soc. Japan, 74, 2492 (2005) · Zbl 1081.82024
[57] Zabusky, N. J.; Kruskal, M. D., Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Let., 15, 240 (1965) · Zbl 1201.35174
[58] Li, Z. H.; Li, L.; Tian, H. P.; Zhou, G. S., New types of solitary wave solutions for the higher order nonlinear Schrödinger equation, Phys. Rev. Lett., 84, 4096 (2000)
[59] Tian, J. P.; Tian, H. P.; Li, Z. H.; Kang, L. S.; Zhou, G. S., An Inter-modulated solitary wave solution for the higher order nonlinear Schrödinger equation, Phys. Scr., 67, 325 (2003) · Zbl 1097.78507
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.