×

A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. (English) Zbl 1370.92023

Summary: In this work we present a mathematical model for the coupling between biomechanics and hemodynamics in the lamina cribrosa, a thin porous tissue at the base of the optic nerve head which is thought to be the site of injury in ocular neurodegenerative diseases such as glaucoma. In this exploratory two-dimensional investigation, the lamina cribrosa is modeled as a poroelastic material where blood vessels are viewed as pores in a solid elastic matrix. The model is used to investigate the influence on the distributions of stress, blood volume fraction (or vascular porosity) and blood velocity within the lamina cribrosa due to the application of different levels of the intraocular pressure (IOP) and the enforcement of different mechanical constraints at the lamina’s boundary. The model simulations suggest that the degree of fixity of the boundary constraint strongly influences the lamina’s response to IOP elevation. Specifically, when the boundary is mechanically clamped, IOP elevation leads to an increase in stress close to the lamina’s boundary, making it more susceptible to tissue damage. On the other hand, when rotations are allowed at the boundary, the most vulnerable region appears to be located at the lamina’s central axis, in proximity of the eye globe, where increased stress and reduced vascular porosity and blood velocity are predicted for increased levels of IOP.

MSC:

92C10 Biomechanics
92C20 Neural biology

References:

[1] Leske, M. C., Open-angle glaucoma: an epidemiologic overview, Ophthalmic. Epidemiol., 14, 166-172 (2007)
[2] Bhole, A.; Flynn, B.; Liles, M.; Saeidiand, N.; Dimarzio, C.; Ruberti, J., Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: implications for load-bearing matrix growth and stability, Philos. Trans. Roy. Soc. A, 367, 3339-3362 (2009)
[3] Camp, R.; Liles, M.; Beale, J.; Flynn, N. S.B.; Moore, E.; Murthy, S.; Ruberti, J., Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer, J. Am. Chem. Soc., 133, 4073-4078 (2011)
[4] Flynn, B.; Saeidi, A. B.N.; Liles, M.; Dimarzio, C.; Ruberti, J., Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (mmp-8), PLoS ONE, 5, e12337 (2010)
[5] Grytz, R.; Girkin, C.; Libertiaux, V.; Downs, J., Perspectives on biomechanical growth and remodeling mechanisms in glaucoma, Mech. Res. Commun., 42, 92-106 (2012)
[6] Grytz, R.; Fazio, M.; Girard, M.; Libertiaux, V.; Bruno, L.; Gardiner, S.; Girkin, C.; Downs, J., Material properties of the posterior human sclera, J. Mech. Behav. Biomed. Mater., 29, 602-617 (2014)
[7] Burgoyne, C.; Downs, J.; Bellezza, A.; Suh, J.-K. F.; Hart, R. T., The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP related stress and strain in the pathophysiology of glaucomatous optic nerve head damage, Prog. Retin. Eye Res., 24, 1, 39-73 (2005)
[8] Burgoyne, C., A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma, Exp. Eye Res., 93, 2, 120-132 (2011)
[9] Caprioli, J.; Coleman, A. L., Blood pressure, perfusion pressure, and glaucoma, Am. J. Ophthalmol., 149, 5, 704-712 (2010)
[10] (Weinreb, R.; Harris, A., Ocular Blood Flow in Glaucoma (2009), Kugler Publications)
[11] Harris, A.; Guidoboni, G.; Arciero, J. C.; Amireskandari, A.; Tobe, L. A.; Siesky, B. A., Ocular hemodynamics and glaucoma: the role of mathematical modeling, Eur. J. Ophthalmol., 23, 2, 139-146 (2013)
[12] Dongqi, H.; Zeqin, R., A biomathematical model for pressure-dependent lamina cribrosa behavior, J. Biomech., 32, 6, 579-584 (1999)
[13] Newson, T.; El-Sheikh, A., Mathematical modeling of the biomechanics of the lamina cribrosa under elevated intraocular pressures, J. Biomech. Eng., 128, 4, 496-504 (2006)
[14] Norman, R.; Flanagan, J.; Sigal, I.; Rausch, S.; Tertinegg, I.; Ethier, C. R., Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma, Exp. Eye Res., 93, 1, 4-12 (2011)
[15] Sigal, I.; Flanagan, J.; Ethier, C., Factors influencing optic nerve head biomechanics, Invest. Ophthalmol. Vis. Sci., 46, 11, 4189-4199 (2005)
[16] Sigal, I.; Yang, H.; Roberts, M.; Burgoyne, C.; Downs, J., IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models, Invest. Ophthalmol. Vis. Sci., 52, 3, 1896-1907 (2011)
[17] Grytz, R.; Meschke, G.; Jonas, J. B., The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach, Biomech. Model. Mechanobiol., 10, 3, 371-382 (2011)
[18] Campbell, I.; Coudrillier, B.; Ethier, C., Biomechanics of the posterior eye: a critical role in health and disease, J. Biomech. Eng., 136, 2, 021005 (2014)
[19] Morris, H.; Tang, J.; Perez, B. C.; Pan, X.; Hart, R.; Weber, P.; Liu, J., Correlation between biomechanical responses of posterior sclera and IOP elevations during micro intraocular volume change, Invest. Ophthalmol. Vis. Sci., 54, 12, 7215-7222 (2013)
[20] Girard, M.; Dupps, W.; Baskaran, M.; Scarcelli, G.; Yun, S.; Quigley, H.; Sigal, I.; Strouthidis, N., Translating ocular biomechanics into clinical practice: current state and future prospects, Curr. Eye Res., 15, 1-18 (2014)
[21] Sigal, I.; Grimm, J.; Schuman, J.; Kagemann, L.; Ishikawa, H.; Wollstein, G., A method to estimate biomechanics and mechanical properties of optic nerve head tissues from parameters measurable using optical coherence tomography, IEEE Trans. Med. Imag., 33, 6, 1381-1389 (2014)
[22] Arciero, J.; Harris, A.; Siesky, B.; Amireskandari, A.; Gershuny, V.; Pickrell, A.; Guidoboni, G., Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation, Invest. Ophthalmol. Vis. Sci., 54, 8, 5584-5593 (2013)
[23] Guidoboni, G.; Harris, A.; Carichino, L.; Arieli, Y.; Siesky, B. A., Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model, Math. Biosci. Eng., 11, 3, 523-546 (2014) · Zbl 1298.76245
[24] Guidoboni, G.; Harris, A.; Cassani, S.; Arciero, J.; Siesky, B.; Amireskandari, A.; Tobe, L.; Egan, P.; Januleviciene, I.; Park, J.; pressure, Intraocular, blood pressure and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance, Invest. Ophthalmol. Vis. Sci., 55, 7, 4105-4118 (2014)
[25] Huyghe, J.; Arts, T.; van Campen, D.; Reneman, R., Porous medium finite element model of the beating left ventricle, Am. J. Physiol., 262, 4 Pt 2, H1256-H1267 (1992)
[26] Chapelle, D.; Sainte-Marie, J.; Gerbeau, J.-F.; Vignon-Clementel, I., A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comput. Mech., 46, 1, 91-101 (2010) · Zbl 1301.92016
[27] Tully, B.; Ventikos, Y., Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus, J. Fluid Mech., 667, 188-215 (2011) · Zbl 1225.76317
[28] Li, X.; von Holst, H.; Kleiven, S., Influences of brain tissue poroelastic constants on intracranial pressure (icp) during constant-rate infusion, Comput. Methods Biomech. Biomed. Engin., 16, 12, 1330-1343 (2013)
[29] Cowin, S., Bone poroelasticity, J. Biomech., 32, 3, 217-238 (1999)
[30] Yoon, Y.; Chung, J.; Bae, C.; Han, S., The speed of sound through trabecular bone predicted by Biot theory, J. Biomech., 45, 4, 716-718 (2012)
[31] Woo, S. L.-Y.; Kobayashi, A. S.; Schlegel, W. A.; Lawrence, C., Nonlinear material properties of intact cornea and sclera, Exp. Eye Res., 14, 1, 29-39 (1972)
[32] Yan, D. B.; Flanagan, J. G.; Farra, T.; Trope, G. E.; Ethier, C. R., Study of regional deformation of the optic nerve head using scanning laser tomography, Curr. Eye Res., 17, 9, 903-916 (1998)
[33] Harris, A.; Jonescu-Cuypers, C.; Kagemann, L.; Ciulla, T.; Krieglstein, G., Atlas of Ocular Blood Flow. Atlas of Ocular Blood Flow, Vascular Anatomy, Pathophysiology, and Metabolism (2003), Elsevier
[34] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[35] Coussy, O., Poromechanics (2004), John Wiley & Sons
[36] Detournay, E.; Cheng, A. H.-D., Fundamentals of poroelasticity, (Fairhurst, C., Comprehensive Rock Engineering: Principles. Comprehensive Rock Engineering: Principles, Practice and Projects, vol. II (1993), Pergamon Press), 113-171, (Chapter 5)
[37] Balaratnasingam, C.; Kang, M.; Yu, P.; Chan, G.; Morgan, W.; Cringle, S.; Yu, D., Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions, Exp. Eye Res., 121, 11-22 (2014)
[38] Showalter, R. E., Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 1, 310-340 (2000) · Zbl 0979.74018
[39] Herrmann, L. R., Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA J., 3, 10, 1896-1900 (1965)
[40] Jerome, J., Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices (1996), Springer-Verlag
[41] Hatch, W.; Flanagan, J.; Etchells, E.; Williams-Lyn, D.; Trope, G., Laser scanning tomography of the optic nerve head in ocular hypertension and glaucoma, Br. J. Ophthalmol., 81, 10, 871-876 (1997)
[42] Guidoboni, G.; Harris, A.; Arciero, J.; Siesky, B.; Amireskandari, A.; Gerber, A.; Huck, A.; Kim, N.; Cassani, S.; Carichino, L., Mathematical modeling approaches in the study of glaucoma disparities among people of african and european descents, J. Coupled Syst. Multiscale Dyn., 1, 1, 1-21 (2013)
[43] Girard, M.; Suh, J.; Bottlang, M.; Burgoyne, C.; Downs, J., Scleral biomechanics in the aging monkey eye, Invest. Ophthalmol. Vis. Sci., 50, 11, 5226-5237 (2009)
[44] Jonas, J.; Holbach, L.; Panda-Jonas, S., Peripapillary ring: histology and correlations, Acta Ophthalmol., 92, 4, e273-e279 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.