×

Strong uniform laws of large numbers for bootstrap means and other randomly weighted sums. (English) Zbl 1543.60039

Summary: This article establishes novel strong uniform laws of large numbers for randomly weighted sums such as bootstrap means. By leveraging recent advances, these results extend previous work in their general applicability to a wide range of weighting procedures and in their flexibility with respect to the effective bootstrap sample size. In addition to the standard multinomial bootstrap and the \(m\)-out-of-\(n\) bootstrap, our results apply to a large class of randomly weighted sums involving negatively orthant dependent (NOD) weights, including the Bayesian bootstrap, jackknife, resampling without replacement, simple random sampling with over-replacement, independent weights, and multivariate Gaussian weighting schemes. Weights are permitted to be non-identically distributed and possibly even negative. Our proof technique is based on extending a proof of the i.i.d. strong uniform law of large numbers to employ strong laws for randomly weighted sums; in particular, we exploit a recent Marcinkiewicz-Zygmund strong law for NOD weighted sums.

MSC:

60F15 Strong limit theorems
62G09 Nonparametric statistical resampling methods
62G05 Nonparametric estimation

References:

[1] Antal, E.; Tillé, Y., A direct bootstrap method for complex sampling designs from a finite population, J. Amer. Statist. Assoc., 106, 494, 534-543, 2011 · Zbl 1232.62030
[2] Antal, E.; Tillé, Y., Simple random sampling with over-replacement, J. Statist. Plann. Inference, 141, 1, 597-601, 2011 · Zbl 1197.62007
[3] Arenal-Gutiérrez, E.; Matrán, C.; Cuesta-Albertos, J. A., On the unconditional strong law of large numbers for the bootstrap mean, Statist. Probab. Lett., 27, 1, 49-60, 1996 · Zbl 0866.60029
[4] Asadian, N.; Fakoor, V.; Bozorgnia, A., Rosenthal’s type inequalities for negatively orthant dependent random variables, J. Iranian Stat. Soc., 5, 1 and 2, 69-75, 2006 · Zbl 1490.60044
[5] Athreya, K. B.; Ghosh, M.; Low, L. Y.; Sen, P. K., Laws of large numbers for bootstrapped U-statistics, J. Statist. Plann. Inference, 9, 2, 185-194, 1984 · Zbl 0533.62043
[6] Bickel, P. J.; Götze, F.; van Zwet, W. R., Resampling fewer than n observations: Gains, losses, and remedies for losses, (Selected Works of Willem Van Zwet, 2012, Springer), 267-297 · Zbl 1373.62173
[7] Breiman, L., Bagging predictors, Mach. Learn., 24, 2, 123-140, 1996 · Zbl 0858.68080
[8] Chatterjee, S.; Bose, A., Generalized bootstrap for estimating equations, Ann. Statist., 33, 1, 414-436, 2005 · Zbl 1065.62073
[9] Chen, P.; Zhang, T.; Sung, S. H., Strong laws for randomly weighted sums of random variables and applications in the bootstrap and random design regression, Statist. Sinica, 29, 4, 1739-1749, 2019 · Zbl 1439.60032
[10] Efron, B., Increasing properties of Pólya frequency function, Ann. Math. Stat., 272-279, 1965 · Zbl 0134.36704
[11] Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 1-26, 1979 · Zbl 0406.62024
[12] Efron, B., The Jackknife, the Bootstrap and Other Resampling Plans, 1982, SIAM · Zbl 0496.62036
[13] Efron, B.; Tibshirani, R. J., An Introduction to the Bootstrap, 1994, CRC Press
[14] Folland, G. B., Real Analysis: Modern Techniques and Their Applications, 2013, John Wiley & Sons
[15] Ghosh, J. K.; Ramamoorthi, R. V., Bayesian nonparametrics, (Springer Series in Statistics, 2003, Springer, SpringerLink (Online service): Springer, SpringerLink (Online service) New York, NY) · Zbl 1029.62004
[16] Giné, E.; Zinn, J., Bootstrapping general empirical measures, Ann. Probab., 851-869, 1990 · Zbl 0706.62017
[17] Huggins, J. H.; Miller, J. W., Robust inference and model criticism using bagged posteriors, 2019, arXiv preprint arXiv:1912.07104
[18] Huggins, J. H.; Miller, J. W., Reproducible model selection using bagged posteriors, Bayesian Anal., 1-26, 2022
[19] Joag-Dev, K.; Proschan, F., Negative association of random variables with applications, Ann. Statist., 286-295, 1983 · Zbl 0508.62041
[20] Kosorok, M. R., Introduction to Empirical Processes and Semiparametric Inference, 2008, Springer · Zbl 1180.62137
[21] Lehmann, E. L., Some concepts of dependence, Ann. Math. Stat., 37, 5, 1137-1153, 1966 · Zbl 0146.40601
[22] Little, M. A.; Badawy, R., Causal bootstrapping, 2019, arXiv preprint arXiv:1910.09648
[23] Nelsen, R. B., An Introduction to Copulas, 2006, Springer · Zbl 1152.62030
[24] Newton, M. A.; Raftery, A. E., Approximate Bayesian inference with the weighted likelihood bootstrap, J. R. Stat. Soc. Ser. B Stat. Methodol., 56, 1, 3-26, 1994 · Zbl 0788.62026
[25] Patak, Z.; Beaumont, J.-F., Generalized bootstrap for prices surveys, (57th Session of the International Statistical Institute, Durban, South-Africa, 2009)
[26] Rivaz, F.; Amini, M.; Bozorgnia, A. G., Moment inequalities and applications for negative dependence random variables 26 (4), 7-11, 2007
[27] Rubin, D. B., The Bayesian bootstrap, Ann. Statist., 130-134, 1981
[28] Shalev-Shwartz, S.; Ben-David, S., Understanding Machine Learning: From Theory to Algorithms, 2014, Cambridge University Press · Zbl 1305.68005
[29] Singh, K., On the asymptotic accuracy of Efron’s bootstrap, Ann. Statist., 1187-1195, 1981 · Zbl 0494.62048
[30] Singh, K.; Xie, M., Bootlier-plot: Bootstrap based outlier detection plot, Sankhyā: Indian J. Stat., 532-559, 2003 · Zbl 1193.62075
[31] Vaart, A. W.; Wellner, J. A., Weak Convergence and Empirical Processes, 1996, Springer · Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.